Skip to content

Common utility functions for Znamenskiy's lab projects

License

Notifications You must be signed in to change notification settings

znamlab/znamutils

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ZnamUtils

This package contains common utilities for Znamenskiy's lab projects.

# SlurmIt

@slurm_it is a decorator allowing to run a function on slurm. Once set up, running the decorated function with use_slurm=False will run the function and return its normal output. Running the decorated function with use_slurm=True will create a slurm script and a python script, submit the slurm script and return the job id of the slurm job.

Usage

If we want to run this function on slurm:

def analysis_step(param1, param2):
  out = dostuff(param1, param2)
  return out

We need to decorate it

@slurm_it(conda_env='myenv')
def analysis_step(param1, param2):
  out = dostuff(param1, param2)
  return out

Then it can be called normally:

analysis_step(param1, param2, use_slurm=False)

Or on slurm:

analysis_step(param1, param2, use_slurm=True, slurm_folder='~/somewhere')

Setting slurm parameters

The decorator has five arguments:

  • conda_env (str): name of the conda environment to activate. Required.
  • module_list (list, optional): list of modules to load with ml. Defaults to None.
  • slurm_options (dict, optional): options to pass to sbatch. Will be used to update the default config (see below) if not None. Defaults to None.
  • imports (list, optional): list of imports to add to the python script. Defaults to None.
  • from_imports (dict, optional): dict of imports to add to the python script as "from key import value". Defaults to None.

The default parameters of SlurmIt are:

ntasks=1
time="12:00:00"
mem="32G"
partition="cpu"

An example of fully custromised decoration would be:

@slurm_it(conda_env='myenv',
  module_list=['FFmpeg', 'cuda'],
  slurm_options=dict(partition="gpu",
  imports=['numpy', 'matplotlib'],
  from_imports={'sklearn': 'svm'}
  )
def analysis_step(param1, param2):
  out = dostuff(param1, param2)
  return out

Note: imports and from_imports are useful only if the decorated function require non built-in datatype arguments or if the module containing the function cannot be accessed from the python script in the same way as it is in the code calling slurm_it (for instance if you use relative imports). Then explicitely setting from_imports to import the decorated function is required.

Calling the decorated function

The decorated function will have 6 new keyword arguments:

use_slurm (bool): whether to use slurm or not
dependency_type (str, optional): Type of dependence on previous jobs.
    Defaults to "afterok" which only runs the next job if all previous
    jobs have finished successfully. Other options are "after", "afterany",
    "aftercorr" and "afternotok". See sbatch documentation for more details.
job_dependency (str): job id to depend on
slurm_folder (str): where to write the slurm script and logs
scripts_name (str): name of the slurm script and python file
slurm_options (dict): options to pass to sbatch, will update the default options
  provided in the decorator.
batch_param_names (list): list of parameters on which the function should be batched
batch_param_values (list): list of values for the batched parameters

When use_slurm = True, slurm_folder must be provided. If scripts_name is false, the name of the function is used instead.

If batch_param_names is provided, batch_param_values must be a list of tuples the same length as batch_param_names. The function will be called for each tuple of values in batch_param_values.

Calling:

jobid = analysis_step(param1, param2, use_slurm=True, slurm_folder='~/somewhere', job_depency=1234324)

will create ~/somewhere/analysis_step.py and ~/somewhere/analysis_step.sh, then sbatch the sh script with --dependency=afterok:1234324.

jobid = analysis_step(param1, param2, use_slurm=True, slurm_folder='~/somewhere', scripts_name='run_2')

will create ~/somewhere/run2.py and ~/somewhere/run2.sh, then sbatch the sh script without dependencies.

Limitations:

IMPORT and parameter types (to document)

# Slurm utils

A collection of utilities to interact with the Slurm scheduler. Used by slurmit

Tests

To run the test, we need to access camp/nemo and slurm. It also requires a flexiznam installation.

About

Common utility functions for Znamenskiy's lab projects

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages