Skip to content

Commit

Permalink
New YOLOv5 Classification Models (#8956)
Browse files Browse the repository at this point in the history
* Update

* Logger step fix: Increment step with epochs (#8654)

* enhance

* revert

* allow training from scratch

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update --img argument from train.py 

single line

* fix image size from 640 to 128

* suport custom dataloader and augmentation

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* format

* Update dataloaders.py

* Single line return, single line comment, remove unused argument

* address PR comments

* fix spelling

* don't augment eval set

* use fstring

* update augmentations.py

* new maning convention for transforms

* reverse if statement, inline ops

* reverse if statement, inline ops

* updates

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update dataloaders

* Remove additional if statement

* Remove is_train as redundant

* Cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup2

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update classifier.py

* Update augmentations.py

* fix: imshow clip warning

* update

* Revert ToTensorV2 removal

* Update classifier.py

* Update normalize values, revert uint8

* normalize image using cv2

* remove dedundant comment

* Update classifier.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* replace print with logger

* commit steps

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <[email protected]>

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Allow logging models from GenericLogger (#8676)

* enhance

* revert

* allow training from scratch

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update --img argument from train.py 

single line

* fix image size from 640 to 128

* suport custom dataloader and augmentation

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* format

* Update dataloaders.py

* Single line return, single line comment, remove unused argument

* address PR comments

* fix spelling

* don't augment eval set

* use fstring

* update augmentations.py

* new maning convention for transforms

* reverse if statement, inline ops

* reverse if statement, inline ops

* updates

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update dataloaders

* Remove additional if statement

* Remove is_train as redundant

* Cleanup

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Cleanup2

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update classifier.py

* Update augmentations.py

* fix: imshow clip warning

* update

* Revert ToTensorV2 removal

* Update classifier.py

* Update normalize values, revert uint8

* normalize image using cv2

* remove dedundant comment

* Update classifier.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* replace print with logger

* commit steps

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support final model logging

* update

* update

* update

* update

* remove curses

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update classifier.py

* Update __init__.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <[email protected]>

* Update

* Update

* Update

* Update

* Update dataset download

* Update dataset download

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Pass imgsz to classify_transforms()

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Cos scheduler

* Cos scheduler

* Remove unused args

* Update

* Add seed

* Add seed

* Update

* Update

* Add run(), main()

* Merge master

* Merge master

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Create YOLOv5 BaseModel class (#8829)

* Create BaseModel

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Hub load device fix

* Update

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Add experiment

* Merge master

* Attach names

* weight decay = 1e-4

* weight decay = 5e-5

* update smart_optimizer console printout

* fashion-mnist fix

* Merge master

* Update Table

* Update Table

* Remove destroy process group

* add kwargs to forward()

* fuse fix for resnet50

* nc, names fix for resnet50

* nc, names fix for resnet50

* ONNX CPU inference fix

* revert

* cuda

* if augment or visualize

* if augment or visualize

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* New smart_inference_mode()

* Update README

* Refactor into /classify dir

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* reset defaults

* reset defaults

* fix gpu predict

* warmup

* ema half fix

* spacing

* remove data

* remove cache

* remove denormalize

* save run settings

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* verbose false on initial plots

* new save_yaml() function

* Update ci-testing.yml

* Path(data) CI fix

* Separate classification CI

* fix val

* fix val

* fix val

* smartCrossEntropyLoss

* skip validation on hub load

* autodownload with working dir root

* str(data)

* Dataset usage example

* im_show normalize

* im_show normalize

* add imagenet simple names to multibackend

* Add validation speeds

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* 24-space names

* Update bash scripts

* Update permissions

* Add bash script arguments

* remove verbose

* TRT data fix

* names generator fix

* optimize if names

* update usage

* Add local loading

* Verbose=False

* update names printing

* Add Usage examples

* Add Usage examples

* Add Usage examples

* Add Usage examples

* named_children

* reshape_classifier_outputs

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* update

* update

* fix CI

* fix incorrect class substitution

* fix incorrect class substitution

* remove denormalize

* ravel fix

* cleanup

* update opt file printing

* update opt file printing

* update defaults

* add opt to checkpoint

* Add warning

* Add comment

* plot half bug fix

* Use NotImplementedError

* fix export shape report

* Fix TRT load

* cleanup CI

* profile comment

* CI fix

* Add cls models

* avoid inplace error

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix usage examples

* Update README

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

* Update README

Co-authored-by: Ayush Chaurasia <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Aug 17, 2022
1 parent 3456fe6 commit d3ea0df
Show file tree
Hide file tree
Showing 22 changed files with 1,437 additions and 162 deletions.
109 changes: 92 additions & 17 deletions .github/README_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -171,26 +171,23 @@ python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 12
## <div align="center">如何与第三方集成</div>

<div align="center">
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
</a>
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
</a>
<a href="https://bit.ly/yolov5-deci-platform">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-deci.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
<a href="https://cutt.ly/yolov5-readme-clearml">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-clearml.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="14%" height="0" alt="" />
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb.png" width="10%" /></a>
</div>

|Weights and Biases|Roboflow ⭐ 新|
|:-:|:-:|
|通过 [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) 自动跟踪和可视化你在云端的所有YOLOv5训练运行状态。|标记并将您的自定义数据集直接导出到YOLOv5,以便用 [Roboflow](https://roboflow.com/?ref=ultralytics) 进行训练。 |

<!-- ## <div align="center">Compete and Win</div>
|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|Weights & Biases
|:-:|:-:|:-:|:-:|
|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)

We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
<p align="center">
<a href="https://github.com/ultralytics/yolov5/discussions/3213">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
</p> -->

## <div align="center">为什么选择 YOLOv5</div>

Expand Down Expand Up @@ -239,6 +236,84 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi

</details>


## <div align="center">Classification ⭐ NEW</div>

YOLOv5 [release v6.2](https://github.com/ultralytics/yolov5/releases) brings support for classification model training, validation, prediction and export! We've made training classifier models super simple. Click below to get started.

<details>
<summary>Classification Checkpoints (click to expand)</summary>

<br>

We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) for easy reproducibility.

| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Training<br><sup>90 epochs<br>4xA100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TensorRT V100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@224 (B) |
|----------------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----------------------------------------------|--------------------------------|-------------------------------------|--------------------|------------------------|
| [YOLOv5n-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5n-cls.pt) | 224 | 64.6 | 85.4 | 7:59 | **3.3** | **0.5** | **2.5** | **0.5** |
| [YOLOv5s-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5s-cls.pt) | 224 | 71.5 | 90.2 | 8:09 | 6.6 | 0.6 | 5.4 | 1.4 |
| [YOLOv5m-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5m-cls.pt) | 224 | 75.9 | 92.9 | 10:06 | 15.5 | 0.9 | 12.9 | 3.9 |
| [YOLOv5l-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5l-cls.pt) | 224 | 78.0 | 94.0 | 11:56 | 26.9 | 1.4 | 26.5 | 8.5 |
| [YOLOv5x-cls](https://github.com/ultralytics/yolov5/releases/download/v6.2/yolov5x-cls.pt) | 224 | **79.0** | **94.4** | 15:04 | 54.3 | 1.8 | 48.1 | 15.9 |
| |
| [ResNet18](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet18.pt) | 224 | 70.3 | 89.5 | **6:47** | 11.2 | 0.5 | 11.7 | 3.7 |
| [ResNet34](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet34.pt) | 224 | 73.9 | 91.8 | 8:33 | 20.6 | 0.9 | 21.8 | 7.4 |
| [ResNet50](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet50.pt) | 224 | 76.8 | 93.4 | 11:10 | 23.4 | 1.0 | 25.6 | 8.5 |
| [ResNet101](https://github.com/ultralytics/yolov5/releases/download/v6.2/resnet101.pt) | 224 | 78.5 | 94.3 | 17:10 | 42.1 | 1.9 | 44.5 | 15.9 |
| |
| [EfficientNet_b0](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b0.pt) | 224 | 75.1 | 92.4 | 13:03 | 12.5 | 1.3 | 5.3 | 1.0 |
| [EfficientNet_b1](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b1.pt) | 224 | 76.4 | 93.2 | 17:04 | 14.9 | 1.6 | 7.8 | 1.5 |
| [EfficientNet_b2](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b2.pt) | 224 | 76.6 | 93.4 | 17:10 | 15.9 | 1.6 | 9.1 | 1.7 |
| [EfficientNet_b3](https://github.com/ultralytics/yolov5/releases/download/v6.2/efficientnet_b3.pt) | 224 | 77.7 | 94.0 | 19:19 | 18.9 | 1.9 | 12.2 | 2.4 |

<details>
<summary>Table Notes (click to expand)</summary>

- All checkpoints are trained to 90 epochs with SGD optimizer with lr0=0.001 at image size 224 and all default settings. Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2.
- **Accuracy** values are for single-model single-scale on [ImageNet-1k](https://www.image-net.org/index.php) dataset.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224`
- **Speed** averaged over 100 inference images using a Google [Colab Pro](https://colab.research.google.com/signup) V100 High-RAM instance.<br>Reproduce by `python classify/val.py --data ../datasets/imagenet --img 224 --batch 1`
- **Export** to ONNX at FP32 and TensorRT at FP16 done with `export.py`. <br>Reproduce by `python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224`
</details>
</details>

<details>
<summary>Classification Usage Examples (click to expand)</summary>

### Train
YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the `--data` argument. To start training on MNIST for example use `--data mnist`.

```bash
# Single-GPU
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128

# Multi-GPU DDP
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
```

### Val
Validate accuracy on a pretrained model. To validate YOLOv5s-cls accuracy on ImageNet.
```bash
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224
```

### Predict
Run a classification prediction on an image.
```bash
python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
```
```python
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt') # load from PyTorch Hub
```

### Export
Export a group of trained YOLOv5-cls, ResNet and EfficientNet models to ONNX and TensorRT.
```bash
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224
```
</details>


## <div align="center">贡献</div>

我们重视您的意见! 我们希望给大家提供尽可能的简单和透明的方式对 YOLOv5 做出贡献。开始之前请先点击并查看我们的 [贡献指南](CONTRIBUTING.md),填写[YOLOv5调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) 来向我们发送您的经验反馈。真诚感谢我们所有的贡献者!
Expand Down
32 changes: 21 additions & 11 deletions .github/workflows/ci-testing.yml
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@ name: YOLOv5 CI

on:
push:
branches: [master]
branches: [ master ]
pull_request:
branches: [master]
branches: [ master ]
schedule:
- cron: '0 0 * * *' # runs at 00:00 UTC every day

Expand All @@ -16,9 +16,9 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-latest]
python-version: ['3.9'] # requires python<=3.9
model: [yolov5n]
os: [ ubuntu-latest ]
python-version: [ '3.9' ] # requires python<=3.9
model: [ yolov5n ]
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
Expand Down Expand Up @@ -47,9 +47,9 @@ jobs:
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
python-version: ['3.10']
model: [yolov5n]
os: [ ubuntu-latest, macos-latest, windows-latest ]
python-version: [ '3.10' ]
model: [ yolov5n ]
include:
- os: ubuntu-latest
python-version: '3.7' # '3.6.8' min
Expand Down Expand Up @@ -87,7 +87,7 @@ jobs:
else
pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cpu
fi
shell: bash # required for Windows compatibility
shell: bash # for Windows compatibility
- name: Check environment
run: |
python -c "import utils; utils.notebook_init()"
Expand All @@ -100,8 +100,8 @@ jobs:
python --version
pip --version
pip list
- name: Run tests
shell: bash
- name: Test detection
shell: bash # for Windows compatibility
run: |
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
m=${{ matrix.model }} # official weights
Expand All @@ -123,3 +123,13 @@ jobs:
model = torch.hub.load('.', 'custom', path=path, source='local')
print(model('data/images/bus.jpg'))
EOF
- name: Test classification
shell: bash # for Windows compatibility
run: |
m=${{ matrix.model }}-cls.pt # official weights
b=runs/train-cls/exp/weights/best.pt # best.pt checkpoint
python classify/train.py --imgsz 32 --model $m --data mnist2560 --epochs 1 # train
python classify/val.py --imgsz 32 --weights $b --data ../datasets/mnist2560 # val
python classify/predict.py --imgsz 32 --weights $b --source ../datasets/mnist2560/test/7/60.png # predict
python classify/predict.py --imgsz 32 --weights $m --source data/images/bus.jpg # predict
python export.py --weights $b --img 64 --imgsz 224 --include torchscript # export
Loading

0 comments on commit d3ea0df

Please sign in to comment.