Skip to content

The classical papers and codes about generative adversarial nets

Notifications You must be signed in to change notification settings

shenglih/AdversarialNetsPapers

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 

Repository files navigation

AdversarialNetsPapers

The classical Papers about adversarial nets

The First paper

✅ [Generative Adversarial Nets] [Paper] [Code](the first paper about it)

Unclassified

✅ [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] [Paper][Code]

✅ [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] [Paper][Code](Gan with convolutional networks)(ICLR)

✅ [Adversarial Autoencoders] [Paper][Code]

✅ [Generating Images with Perceptual Similarity Metrics based on Deep Networks] [Paper]

✅ [Generating images with recurrent adversarial networks] [Paper][Code]

✅ [Generative Visual Manipulation on the Natural Image Manifold] [Paper][Code]

✅ [Generative Adversarial Text to Image Synthesis] [Paper][Code][code]

✅ [Learning What and Where to Draw] [Paper][Code]

✅ [Adversarial Training for Sketch Retrieval] [Paper]

✅ [Generative Image Modeling using Style and Structure Adversarial Networks] [Paper][Code]

✅ [Generative Adversarial Networks as Variational Training of Energy Based Models] [Paper](ICLR 2017)

✅ [Adversarial Training Methods for Semi-Supervised Text Classification] [Paper][Note]( Ian Goodfellow Paper)

✅ [Learning from Simulated and Unsupervised Images through Adversarial Training] [Paper][code](Apple paper)

✅ [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] [Paper][Code]

✅ [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] [Paper][Code]

✅ [Adversarial Feature Learning] [Paper]

Ensemble

✅ [AdaGAN: Boosting Generative Models] [Paper][[Code]](Google Brain)

Clustering

✅ [Unsupervised Learning Using Generative Adversarial Training And Clustering] [Paper][Code](ICLR) :white_check_mark: [Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks] [Paper](ICLR)

Image Inpainting

✅ [Semantic Image Inpainting with Perceptual and Contextual Losses] [Paper][Code]

✅ [Context Encoders: Feature Learning by Inpainting] [Paper][Code]

✅ [Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks] [Paper]

✅ [Generative face completion] [Paper][code](CVPR2017)

✅ [Globally and Locally Consistent Image Completion] [MainPAGE](SIGGRAPH 2017)

Joint Probability

✅ [Adversarially Learned Inference][Paper][Code]

Super-Resolution

✅ [Image super-resolution through deep learning ][Code](Just for face dataset)

✅ [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] [Paper][Code](Using Deep residual network)

✅ [EnhanceGAN] [Docs][[Code]]

Disocclusion

✅ [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] [Paper]

Semantic Segmentation

✅ [Semantic Segmentation using Adversarial Networks] [Paper](soumith's paper)

Object Detection

✅ [Perceptual generative adversarial networks for small object detection] [[Paper]](Submitted)

✅ [A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection] [Paper][code](CVPR2017)

RNN

✅ [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] [Paper][Code]

Conditional adversarial

✅ [Conditional Generative Adversarial Nets] [Paper][Code]

✅ [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] [Paper][Code]

✅ [Conditional Image Synthesis With Auxiliary Classifier GANs] [Paper][Code](GoogleBrain ICLR 2017)

✅ [Pixel-Level Domain Transfer] [Paper][Code]

✅ [Invertible Conditional GANs for image editing] [Paper][Code]

✅ [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] [Paper][Code]

✅ [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] [Paper][Code]

Video Prediction

✅ [Deep multi-scale video prediction beyond mean square error] [Paper][Code](Yann LeCun's paper)

✅ [Unsupervised Learning for Physical Interaction through Video Prediction] [Paper](Ian Goodfellow's paper)

✅ [Generating Videos with Scene Dynamics] [Paper][Web][Code]

Texture Synthesis & style transfer

✅ [Precomputed real-time texture synthesis with markovian generative adversarial networks] [Paper][Code](ECCV 2016)

Image translation

✅ [UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION] [Paper][Code]

✅ [Image-to-image translation using conditional adversarial nets] [Paper][Code][Code]

✅ [Learning to Discover Cross-Domain Relations with Generative Adversarial Networks] [Paper][Code]

✅ [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] [Paper][Code]

✅ [Unsupervised Image-to-Image Translation with Generative Adversarial Networks] [Paper]

✅ [Unsupervised Image-to-Image Translation Networks] [Paper]

GAN Theory

✅ [Energy-based generative adversarial network] [Paper][Code](Lecun paper)

✅ [Improved Techniques for Training GANs] [Paper][Code](Goodfellow's paper)

✅ [Mode Regularized Generative Adversarial Networks] [Paper](Yoshua Bengio , ICLR 2017)

✅ [Improving Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio , ICLR 2017)

✅ [Sampling Generative Networks] [Paper][Code]

✅ [Mode Regularized Generative Adversarial Networkss] [Paper]( Yoshua Bengio's paper)

✅ [How to train Gans] [Docu]

✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)

✅ [Unrolled Generative Adversarial Networks] [Paper][Code](ICLR 2017)

✅ [Least Squares Generative Adversarial Networks] [Paper][Code]

✅ [Wasserstein GAN] [Paper][Code]

✅ [Improved Training of Wasserstein GANs] [Paper][Code](The improve of wgan)

✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper]

3D

✅ [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] [Paper][Web][code](2016 NIPS)

MUSIC

✅ [MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions] [Paper][HOMEPAGE]

Face Generative and Editing

✅ [Autoencoding beyond pixels using a learned similarity metric] [Paper][code]

✅ [Coupled Generative Adversarial Networks] [Paper][Caffe Code][Tensorflow Code](NIPS)

✅ [Invertible Conditional GANs for image editing] [Paper][Code]

✅ [Learning Residual Images for Face Attribute Manipulation] [Paper]

✅ [Neural Photo Editing with Introspective Adversarial Networks] [Paper][Code](ICLR 2017)

For discrete distributions

✅ [Maximum-Likelihood Augmented Discrete Generative Adversarial Networks] [Paper]

✅ [Boundary-Seeking Generative Adversarial Networks] [Paper]

✅ [GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution] [Paper]

Adversarial Examples

✅ [SafetyNet: Detecting and Rejecting Adversarial Examples Robustly] [Paper]

Project

✅ [cleverhans] [Code](A library for benchmarking vulnerability to adversarial examples)

✅ [reset-cppn-gan-tensorflow] [Code](Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)

✅ [HyperGAN] [Code](Open source GAN focused on scale and usability)

Blogs

Author Address
inFERENCe Adversarial network
inFERENCe InfoGan
distill Deconvolution and Image Generation
yingzhenli Gan theory
OpenAI Generative model

Other

✅ [1] http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf (NIPS Goodfellow Slides)[Chinese Trans][details]

✅ [2] [PDF](NIPS Lecun Slides)

About

The classical papers and codes about generative adversarial nets

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published