Skip to content

Commit

Permalink
Merge pull request #4 from jkbhagatio/dev
Browse files Browse the repository at this point in the history
Dev
  • Loading branch information
jkbhagatio authored Apr 22, 2024
2 parents 118c409 + 206f04a commit 0b9d1e7
Show file tree
Hide file tree
Showing 3 changed files with 348 additions and 21 deletions.
288 changes: 288 additions & 0 deletions ddp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,288 @@
"""Runs distributed training of NanoGPTs across multiple GPUs using PyTorch's DDP."""

import argparse # noqa: I001
import os
import time
from itertools import product
from pathlib import Path

import numpy as np
import torch
import wandb
from torch import multiprocessing as mp
from torch import nn, optim
from torch.distributed import destroy_process_group, init_process_group
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Adam, AdamW, NAdam
from torch.utils.data import DataLoader, TensorDataset, random_split
from torch.utils.data.distributed import DistributedSampler

from nanogpt import NanoGPT, build_dataset

# Hyperparameters for model setup.
LR_SET = [5e-2, 1e-3, 1e-4] # learning rate set
OPTIM_SET = [Adam, AdamW, NAdam] # optimizer set
ARCH_SET = [ # model architecture set
{"ctx_len": 256, "emb_dim": 256, "n_heads": 8, "head_sz": 32, "n_blocks": 8},
{"ctx_len": 2048, "emb_dim": 1024, "n_heads": 16, "head_sz": 64, "n_blocks": 12},
{"ctx_len": 2048, "emb_dim": 1024, "n_heads": 20, "head_sz": 80, "n_blocks": 12},
]

def setup(
rank: int, # rank of current process
world_size: int, # number of processes
master_addr: str, # master machine address (IP or hostname)
master_port: str, # master machine port
):
"""Sets up the DDP environment."""
os.environ["MASTER_ADDR"] = master_addr
os.environ["MASTER_PORT"] = master_port
# Create distributed process group.
init_process_group(backend="gloo", rank=rank, world_size=world_size)

def cleanup():
"""Cleans up and kills DDP environment."""
destroy_process_group()
wandb.finish()

def train(
model: nn.Module, # model
train_loader: DataLoader, # batched dataset for training
val_loader: DataLoader, # batched dataset for validation
optimizer: optim, # optimizer
loss_fn: nn.modules.loss, # loss function
rank: int, # rank of current process
max_epochs: int = 5, # max n training epochs
max_batches: int = 500, # max n batches to train
val_chk_interval: int = 200, # check val loss every `val_chk_interval` batches & print losses
val_iter: int = 5, # number of batches on val_loader to run and avg when computing val loss
patience_thresh: int = 1e9, # consecutive batches without val loss decrease for early stopping
save_chkpt_dir: str = "", # dir to save model checkpoint
save_chkpt_thresh: float = 0.5, # save model chkpnt every `save_chkpt_interval` loss decrease
) -> tuple[torch.Tensor, np.ndarray, np.ndarray]: # -> loss, train_losses, val_losses
"""Trains a model, returns loss."""
# <s Nested helper functions to make `train` more readable.
@torch.no_grad()
def estimate_losses(
model, val_loader, val_losses, val_losses_avg, train_losses, train_losses_avg
):
"""Estimate losses on val_loader, and return val loss and train loss avg."""
model.eval()
for val_i, (x_val, y_val) in enumerate(val_loader):
logits = model(x_val.to(rank))
val_loss = loss_fn(logits.view(-1, n_tokens), y_val.to(rank).view(-1))
val_losses.append(val_loss.item())
if val_i >= (val_iter - 1):
break
val_losses_avg.append(np.mean(val_losses[-val_iter:]))
train_losses_avg.append(np.mean(train_losses[-val_chk_interval:]))
model.train()

def apply_gradient_centralization(optimizer):
"""Applies gradient centralization to the optimizer.
This function should be called before optimizer.step() in the training loop.
"""
for group in optimizer.param_groups:
for param in group["params"]:
if param.grad is not None:
# Compute the mean of the gradient
grad_mean = param.grad.data.mean(
dim=tuple(range(1, len(param.grad.shape))), keepdim=True
)
# Centralize the gradient
param.grad.data -= grad_mean
# /s>
# <s Trackers
_ctx_len, n_tokens = model.module.ctx_len, model.module.n_tokens
_batch_sz, n_batches = train_loader.batch_size, len(train_loader)
batch_lim = min(max_batches, n_batches * max_epochs)
patience_thresh *= val_chk_interval # convert to batches within model validation block
train_losses, val_losses, train_losses_avg, val_losses_avg = [], [], [], []
init_loss, best_val_loss = float("inf"), float("inf")
patience_ct = 0
if rank == 0:
wandb.log({"expected_total_batches": batch_lim})
# /s>

# <s Training loop
start_t = time.time()
for epoch in range(max_epochs):
for batch_i, (x_train, y_train) in enumerate(train_loader):
# <ss Model training.
optimizer.zero_grad()
logits = model(x_train.to(rank)) # -> [batch_sz, ctx_len, n_tokens], but...
# must reshape to compare against batch_sz vector of targets for cross-entropy loss
loss = loss_fn(logits.view(-1, n_tokens), y_train.to(rank).view(-1))
loss.backward()
apply_gradient_centralization(optimizer)
optimizer.step()
train_losses.append(loss.item())
# /ss>
# <ss Model validation.
if val_chk_interval and batch_i % val_chk_interval == 0:
# Estimate and print losses.
estimate_losses(
model, val_loader, val_losses, val_losses_avg, train_losses, train_losses_avg
)
if rank == 0:
wandb.log({"train_loss": train_losses_avg[-1], "val_loss": val_losses_avg[-1]})
# Return if patience check reached (early stopping).
patience_ct = (
0 if val_losses_avg[-1] < best_val_loss else patience_ct + val_chk_interval
)
best_val_loss = min(best_val_loss, val_losses_avg[-1])
if patience_ct >= patience_thresh:
if rank == 0:
wandb.log(
{"train_loss": train_losses_avg[-1], "val_loss": val_losses_avg[-1]}
)
return loss, train_losses_avg, val_losses_avg
# Return if max_batches reached.
if (batch_i + 1) * (epoch + 1) >= max_batches:
if rank == 0:
wandb.log({"train_loss": train_losses_avg[-1], "val_loss": val_losses_avg[-1]})
return loss, train_losses_avg, val_losses_avg
# Save checkpoint check.
if (
Path(save_chkpt_dir).exists()
and (init_loss - loss.item()) > save_chkpt_thresh
and rank == 0
):
torch.save(
model.module.state_dict(),
Path(save_chkpt_dir) / f"model_chkpt_loss{loss.item():.3f}.pth"
)
init_loss = loss.item()
# /ss>
# <ss Progress metrics.
if rank == 0:
n_comp_batches = epoch * n_batches + batch_i + 1
elapsed_t = time.time() - start_t
avg_batch_t = elapsed_t / n_comp_batches
est_total_t = avg_batch_t * batch_lim
est_remaining_t = est_total_t - elapsed_t
wandb.log(
{
"completed_batches": n_comp_batches,
"estimated_time_remaining": est_remaining_t
}
)
# /ss> /s>
# Return after max_epochs reached.
if rank == 0:
wandb.log(
{
"train_loss": train_losses_avg[-1],
"val_loss": val_losses_avg[-1],
"completed_batches": n_comp_batches,
"estimated_time_remaining": est_remaining_t
}
)
if Path(save_chkpt_dir).exists() and rank == 0:
torch.save(
model.module.state_dict(),
Path(save_chkpt_dir) / f"model_chkpt_loss{loss.item():.3f}.pth"
)
return loss, train_losses_avg, val_losses_avg

def main(
rank: int, # rank of current process
world_size: int, # number of processes
master_addr: str, # master machine address (IP or hostname)
master_port: str, # master machine port
text_file: str, # path to text file to train on
train_config: tuple[float, optim.Optimizer, list[dict]], # lr, optimizer, model config
):
"""Main function to run distributed training.
Sets up DDP env, creates dataset from text file, creates and trains model, cleans up DDP env.
"""
# Set up DDP environment.
setup(rank, world_size, master_addr, master_port)
# Set up dataset.
with open(text_file) as f:
text = f.read()
tokens = sorted(set(text))
X, Y = build_dataset(text_file, ctx_len=train_config[2]["ctx_len"])
dataset = TensorDataset(X, Y)
train_data, val_data = random_split(dataset, [0.9, 0.1])
train_loader = DataLoader(
train_data, batch_size=32, shuffle=False, sampler=DistributedSampler(train_data)
)
val_loader = DataLoader(
val_data, batch_size=32, shuffle=False, sampler=DistributedSampler(val_data)
)
# Set up model.
model = NanoGPT(n_tokens=len(tokens), **train_config[2])
model = DDP(model.to(rank), device_ids=[rank])
# Initialize wandb config and run.
param_bytes = 4 # 32-bit floats
bytes_in_gb = 1024**3
n_tot_params = sum(p.numel() for p in model.parameters())
n_tot_params_b = round(n_tot_params / 1e9, 3)
tot_sz_gb = n_tot_params * param_bytes / bytes_in_gb
run_name = f"{train_config[1].__name__}-{train_config[0]}_{n_tot_params_b}B"
if rank == 0:
wandb_config = {
"n_params_bil": n_tot_params_b,
"sz_gb": tot_sz_gb,
"lr": train_config[0],
"optim": train_config[1],
"completed_batches": 0,
"expected_total_batches": None, # set in `train` function
"estimated_time_remaining": None, # set in `train` function
}
wandb_config.update(train_config[2])
# name: <optim>-<lr>_<n_tot_params_b>; e.g. Adam-0.005_0.122B
wandb.init(project="NanoGPT-DDP", entity="jkbhagatio", name=run_name, config=wandb_config)
# Run training.
optimizer = train_config[1](model.parameters(), lr=train_config[0])
loss_fn = nn.CrossEntropyLoss()
save_chkpt_dir = Path.home() / "nanogpt_ddp_runs" / "chkpts" / run_name
train(model, train_loader, val_loader, optimizer, loss_fn, rank, save_chkpt_dir=save_chkpt_dir)
# Clean up DDP environment.
cleanup()

# Run training.
# 'config_idx', 'world_size', 'rank', 'MASTER_ADDR', and 'MASTER_PORT' set in slurm script.
if __name__ == "__main__":
# Parse args.
parser = argparse.ArgumentParser(description="Run DDP distributed training of NanoGPTs.")
parser.add_argument(
"--train-config-idx",
type=int,
required=True,
help="Index of train config to run. (See `train_configs` var)"
)
parser.add_argument(
"--world-size", type=int, required=True, help="Number of processes to use for DDP."
)
#parser.add_argument("--rank", type=int, required=True, help="Rank of current process.")
parser.add_argument(
"--master-addr", type=str, required=True, help="Master address (or hostname) for DDP."
)
parser.add_argument("--master-port", type=str, default="4444", help="Master port for DDP.")
parser.add_argument(
"--text-file",
type=str,
default=(Path.cwd() / "data/tiny_austen.txt"),
help="Path to text file to train on."
)
args = parser.parse_args()
# Set training config.
train_configs = list(product(LR_SET, OPTIM_SET, ARCH_SET))
train_config = train_configs[args.train_config_idx]
# Run DDP training.
mp.spawn( # passes `rank` to `main` as first arg automatically
main,
args=(
args.world_size,
args.master_addr,
args.master_port,
args.text_file,
train_config,
),
nprocs=args.world_size,
join=True,
)
21 changes: 21 additions & 0 deletions ddp.slurm
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
#!/bin/bash
#SBATCH --job-name=ddp-training
#SBATCH --partition=a100
#SBATCH --nodes=2
#SBATCH --gres=gpu:2 # 2 gpus per node
#SBATCH --ntasks=4 # 4 processes per job
#SBATCH --array=0-26%3 # 27 jobs, max 3 in parallel (27 unique models, given hyperparemeter configurations)

# Set first node as the master
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)

# Activate env
source /nfs/nhome/live/jbhagat/mambaforge/etc/profile.d/mamba.sh
mamba activate nanogpt

# Run ddp
srun python ddp.py \
--config-idx="$SLURM_ARRAY_TASK_ID" \
--world-size="$SLURM_NTASKS" \
--rank="$SLURM_PROCID" \
--master-addr="$MASTER_ADDR"
Loading

0 comments on commit 0b9d1e7

Please sign in to comment.