Skip to content

这是一个YoloV4-pytorch的源码,可以用于训练自己的模型。

License

Notifications You must be signed in to change notification settings

jcluo1994/yolov4-pytorch

 
 

Repository files navigation

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现


2021年2月7日更新:
加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。

目录

  1. 性能情况 Performance
  2. 实现的内容 Achievement
  3. 所需环境 Environment
  4. 注意事项 Attention
  5. 小技巧的设置 TricksSet
  6. 文件下载 Download
  7. 预测步骤 How2predict
  8. 训练步骤 How2train
  9. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5
VOC07+12+COCO yolo4_voc_weights.pth VOC-Test07 416x416 - 89.0
COCO-Train2017 yolo4_weights.pth COCO-Val2017 416x416 46.1 70.2

实现的内容

  • 主干特征提取网络:DarkNet53 => CSPDarkNet53
  • 特征金字塔:SPP,PAN
  • 训练用到的小技巧:Mosaic数据增强、Label Smoothing平滑、CIOU、学习率余弦退火衰减
  • 激活函数:使用Mish激活函数
  • ……balabla

所需环境

torch==1.2.0

注意事项

代码中的yolo4_weights.pth是基于608x608的图片训练的,但是由于显存原因。我将代码中的图片大小修改成了416x416。有需要的可以修改回来。 代码中的默认anchors是基于608x608的图片的。
注意不要使用中文标签,文件夹中不要有空格!
在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件

小技巧的设置

在train.py文件下:
1、mosaic参数可用于控制是否实现Mosaic数据增强。
2、Cosine_scheduler可用于控制是否使用学习率余弦退火衰减。
3、label_smoothing可用于控制是否Label Smoothing平滑。

文件下载

训练所需的yolo4_weights.pth可在百度网盘中下载。
链接: https://pan.baidu.com/s/1WlDNPtGO1pwQbqwKx1gRZA 提取码: p4sc
yolo4_weights.pth是coco数据集的权重。
yolo4_voc_weights.pth是voc数据集的权重。

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在百度网盘下载yolo4_weights.pth或者yolo4_voc_weights.pth,放入model_data,运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类
_defaults = {
    "model_path": 'model_data/yolo4_weights.pth',
    "anchors_path": 'model_data/yolo_anchors.txt',
    "classes_path": 'model_data/coco_classes.txt',
    "model_image_size" : (416, 416, 3),
    "confidence": 0.5,
    "cuda": True
}
  1. 运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

训练步骤

  1. 本文使用VOC格式进行训练。
  2. 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
  3. 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
  4. 在训练前利用voc2yolo4.py文件生成对应的txt。
  5. 再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。注意不要使用中文标签,文件夹中不要有空格!
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
  1. 此时会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置
  2. 在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件,示例如下:
classes_path = 'model_data/new_classes.txt'    

model_data/new_classes.txt文件内容为:

cat
dog
...
  1. 运行train.py即可开始训练。

mAP目标检测精度计算更新

更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw

Reference

https://github.com/qqwweee/keras-yolo3/
https://github.com/Cartucho/mAP
https://github.com/Ma-Dan/keras-yolo4

About

这是一个YoloV4-pytorch的源码,可以用于训练自己的模型。

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%