Skip to content

VisionCamera Frame Processor Plugin to detect text in real time using MLKit Text Detector (OCR)

License

Notifications You must be signed in to change notification settings

francesco-clementi-92/vision-camera-ocr

 
 

Repository files navigation

vision-camera-ocr-plugin

A VisionCamera Frame Processor Plugin to preform text detection on images using MLKit Vision Text Recognition. This module can be used only with React Native Vision Camera >= v4.x.x

Installation

yarn add vision-camera-ocr-plugin
cd ios && pod install

Add the plugin to your babel.config.js:

module.exports = {
   plugins: [['react-native-worklets-core/plugin']],
    // ...

Note: You have to restart metro-bundler for changes in the babel.config.js file to take effect.

Usage

import {OCRFrame, scanOCR} from 'vision-camera-ocr-plugin';
import {
  useFrameProcessor,
  Camera,
  useCameraDevice,
} from 'react-native-vision-camera';
import {Worklets} from 'react-native-worklets-core';

export default ({onTextClicked}: VisionCameraPlateProps) => {
  const [hasPermission, setHasPermission] = React.useState(false);
  const [ocr, setOcr] = React.useState<OCRFrame>();
  const isFocused = useIsFocused();
  const device = useCameraDevice('back');

  const onCodeDetected = Worklets.createRunInJsFn((data: any) => {
    setOcr(data);
  });

  const frameProcessor = useFrameProcessor(frame => {
    'worklet';
    const data = scanOCR(frame);
    onCodeDetected(data);
  }, []);

  React.useEffect(() => {
    (async () => {
      const status = await Camera.requestCameraPermission();
      setHasPermission(status === 'granted');
    })();
  }, []);


  return (
    <>
      {device !== undefined && hasPermission ? (
        <Camera
          frameProcessor={frameProcessor}
          device={device}
          isActive={isFocused}
          pixelFormat="yuv"
        />
      ) : (
        <View>
          <Text>No available cameras</Text>
        </View>
      )}
    </>
  );
};

Data

scanOCR(frame) returns an OCRFrame with the following data shape. See the example for how to use this in your app.

 OCRFrame = {
   result: {
     text: string, // Raw result text
     blocks: Block[], // Each recognized element broken into blocks
   ;
};

The text object closely resembles the object documented in the MLKit documents. https://developers.google.com/ml-kit/vision/text-recognition#text_structure

The Text Recognizer segments text into blocks, lines, and elements. Roughly speaking:

a Block is a contiguous set of text lines, such as a paragraph or column,

a Line is a contiguous set of words on the same axis, and

an Element is a contiguous set of alphanumeric characters ("word") on the same axis in most Latin languages, or a character in others

Contributing

See the contributing guide to learn how to contribute to the repository and the development workflow.

License

MIT

About

VisionCamera Frame Processor Plugin to detect text in real time using MLKit Text Detector (OCR)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Kotlin 34.0%
  • Java 28.9%
  • TypeScript 13.4%
  • Objective-C 7.3%
  • Swift 6.2%
  • Ruby 5.9%
  • Other 4.3%