Skip to content

The project's idea is to be able to add URLs to a list that most likely consist of live data. The scrapers will do an initial scrape of the site and send that along with a prompt to an AI model to regenerate a page displaying charts or explain the data retrieved. While allowing the scrapers to continue and push live scraped data to ai generate page

License

Notifications You must be signed in to change notification settings

amacsmith/macfly

Repository files navigation

MacFly

Overview

This application scrapes data from open browser tabs, aggregates it into a local API, and displays the data in a dynamic interface for real-time updates and configuration. The aggregated data can also be used to regenerate web pages using AI models like Anthropic, OpenAI, Gemini, or Groq.

Setup

  1. Clone the repository:

    git clone https://github.com/yourusername/web_scraping_app.git
    cd web_scraping_app
  2. Run the Script:

    bash scripts/setup.sh
  3. Configure your environment variables:

    • Edit the .env file created from the .env.example template and add your API Keys and settings.

Usage

  1. Start the FastAPI application:

    bash scripts/start_api.sh
  2. Start the Streamlit interface:

    bash scripts/start_interface.sh
  3. Open your browser and navigate to http://localhost:8501 to access the Streamlit interface.

Testing

  1. Run the tests:

    python -m unittest discover tests

Logging

Logs are stored in logs/scraper.log with detailed information about scraping activities.

Caching

A simple caching mechanism is implemented to avoid redundant data fetching, with a default TTL (Time to Live) of 300 seconds.

Running the Project

  1. Clone the Repository:

    git clone https://github.com/amacsmith/macscrape.git
  2. Run the Setup Script:

    bash scripts/setup.sh
  3. Configure Environment Variables:

    • Edit the .env file and add your API keys and settings
  4. Start the FastAPI Application:

    bash scripts/start_api.sh
  5. Start the Streamlit Interface:

    bash scripts/start_interface.sh
  6. Access the Interface:

    • Open your browser and navigate to http://localhost:8501 to access the Streamlit interface.
    • Configure scraping parameters and view data in real-time.
    • Use AI integration to regenerate web pages based on scraped data.

    By following these steps, the setup and deployment process will be automated, making it easier to get the application running quickly.

File and Folder Structure

macscrape/
├── ai_integration/
│   ├── __init__.py
│   ├── ai_regenerator.py
│   ├── openai.py
│   ├── anthropic.py
│   ├── claude_opus.py
│   ├── sonnet.py
├── api/
│   ├── __init__.py
│   ├── local_api.py
├── config/
│   ├── __init__.py
│   ├── config_manager.py
├── dynamic_interface/
│   ├── __init__.py
│   ├── app.py
│   ├── static/
│   ├── templates/
│   │   ├── __init__.py
│   │   ├── base.html
│   │   ├── index.html
├── logs/
│   ├── scraper.log
├── scraping/
│   ├── __init__.py
│   ├── scraper.py
│   ├── config_manager.py
├── scripts/
│   ├── __init__.py
│   ├── check_env.py
│   ├── setup.py
│   ├── start.py
│   ├── start_api.py
│   ├── start_interface.py
│   ├── websocket_server.py
├── tests/
│   ├── __init__.py
│   ├── test_scraper.py
├── utils/
│   ├── __init__.py
│   ├── helpers.py
├── venv/
├── .env
├── .env.example
├── main.py
├── README.md
├── requirements.txt

About

The project's idea is to be able to add URLs to a list that most likely consist of live data. The scrapers will do an initial scrape of the site and send that along with a prompt to an AI model to regenerate a page displaying charts or explain the data retrieved. While allowing the scrapers to continue and push live scraped data to ai generate page

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

Packages

No packages published

Languages