DeepLearning framework Tensorflow/Pytorch installation tutorial for newbees...
- Go to the GPU-management platform http://station.csgrandeur.com/gpu/faqs
- Register an account using the inviting-code provided by @LiuNing
- Select an available server and build a new docker instance.
- CUDA:
The NVIDIA® CUDA® Toolkit provides a development environment for creating high performance GPU-accelerated applications. With the CUDA Toolkit, you can develop, optimize and deploy your applications on GPU-accelerated embedded systems, desktop workstations, enterprise data centers, cloud-based platforms and HPC supercomputers. The toolkit includes GPU-accelerated libraries, debugging and optimization tools, a C/C++ compiler and a runtime library to deploy your application.
- cuDNN:
The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers.
- CUDA & cuDNN compatible table:
Refer to [https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html]
- install CUDA Toolkit[https://developer.nvidia.com/cuda-toolkit] v8.0,or any other version you need(It has already been install on our Servers,you can skip this step.)
instructions from https://developer.nvidia.com/cuda-downloads (linux -> x86_64 -> Ubuntu -> 16.04 -> deb (network))
$CUDA_REPO_PKG="cuda-repo-ubuntu1604_8.0.61-1_amd64.deb"
$wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/${CUDA_REPO_PKG}
$dpkg -i ${CUDA_REPO_PKG}
$apt-get update
$apt-get -y install cuda
$vim ~/.bashrc
Append the following two env paths:
[Explanation]: ${PATH:+:${PATH}} means that if PATH exists and PATH is not null then append the directory ${PATH} to PATH.
Install the compatible(with CUDA) cuDNN version:
$CUDNN_TAR_FILE="cudnn-8.0-linux-x64-v6.0.tgz"
$wget http://developer.download.nvidia.com/compute/redist/cudnn/v6.0/${CUDNN_TAR_FILE}
$tar -xzvf ${CUDNN_TAR_FILE}
$cp -P cuda/include/cudnn.h /usr/local/cuda-8.0/include
$cp -P cuda/lib64/libcudnn* /usr/local/cuda-8.0/lib64/
$chmod a+r /usr/local/cuda-8.0/lib64/libcudnn*
$wget https://repo.continuum.io/archive/Anaconda3-2.4.0-Linux-x86_64.sh
[Recommendation]:You can update conda to the lastest version using command as follow:
conda update conda
$bash Anaconda3-2.4.0-Linux-x86_64.sh
Notice:
Approve the licence at last and follow the installation navigation:
Do you approve the license terms? [yes|no]
[no] >>> yes
$conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
$conda config --set show_channel_urls yes
$conda create -n YOUR_ENV_NAME python=3.6
$source activate YOUR_ENV_NAME
$source activate YOUR_ENV_NAME
$mkdir .pip
$vim .pip/pip.conf
copy the following source to .pip/pip.conf
(Notice: Enter the insert mode(press key "i") before you copy the following source to ./pip/pip.conf):
"
[global]
index-url = http://mirrors.aliyun.com/pypi/simple/
[install]
trusted-host = mirrors.aliyun.com
"
After you copy this source to the pip.conf,press "esc" to escape from the insert mode(and enter into normal mode),
and then type ":wq" to save ./pip/pip.conf and exit
$pip install torch==1.2.0 torchvision==0.4.0 -f https://download.pytorch.org/whl/torch_stable.html
Server IP | Port | Owner | Public |
---|---|---|---|
192.168.50.113 | 33010 | None | Yes |
192.168.50.113 | 33020 | Wenxiaobin | No |
192.168.50.113 | 33030 | Zouzhongquan | No |
192.168.50.113 | 33040 | RenHui | Yes |
192.168.50.113 | 33050 | Not Allocated | No |
192.168.50.113 | 33060 | TainLi | No |
192.168.50.113 | 33070 | None | Yes |
192.168.50.113 | 33080 | HeJiaLi | Yes |
192.168.50.113 | 33090 | TangPing | Yes |
192.168.50.50 | 30320 | RenHui | Yes |
192.168.50.50 | 31010 | None | Yes |
192.168.50.50 | 31020 | Wenxiaobin(Scorbin) | Yes |
192.168.50.50 | 31030 | Yangxiaodi | No |
192.168.50.50 | 31040 | Zouzhongquan | No |
192.168.50.50 | 31050 | Hongxuesong | No |
192.168.50.50 | 31060 | HeJiaLi | Yes |
reference link[https://blog.csdn.net/bryant_meng/article/details/79153531]
Sometimes you may encounter : 0%[working...] when you update the source using command
$ apt-get update
This problem probably stems from the directory: /etc/apt where apt-get update works
$ls /etc/apt/
apt.conf.d auth.conf.d preferences.d sources.list source.list.d trusted.gpg trusted.gpg~
- Find out the source you stuck when update ,for our cases,it's source.list.d,this directory stores additional source for some package.
$ rm -r /etc/apt/source.list.d
$ apt-get update