Skip to content

Scorbinwen/Tensorflow-Installation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 

Repository files navigation

Tutorial on virtual envs configuration

DeepLearning framework Tensorflow/Pytorch installation tutorial for newbees...

Prerequisites

Build your own docker instance

  • Go to the GPU-management platform http://station.csgrandeur.com/gpu/faqs
  • Register an account using the inviting-code provided by @LiuNing
  • Select an available server and build a new docker instance.

DL-Framework configuration

Step0. Choose compatible CUDA cudnn version.

  • CUDA:
The NVIDIA® CUDA® Toolkit provides a development environment for creating high performance GPU-accelerated applications. With the CUDA Toolkit, you can develop, optimize and deploy your applications on GPU-accelerated embedded systems, desktop workstations, enterprise data centers, cloud-based platforms and HPC supercomputers. The toolkit includes GPU-accelerated libraries, debugging and optimization tools, a C/C++ compiler and a runtime library to deploy your application.
  • cuDNN:
The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers.

Step1. CUDA Installation

instructions from https://developer.nvidia.com/cuda-downloads (linux -> x86_64 -> Ubuntu -> 16.04 -> deb (network))

Fetch the .deb cuda package.

$CUDA_REPO_PKG="cuda-repo-ubuntu1604_8.0.61-1_amd64.deb"       
$wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/${CUDA_REPO_PKG}           

Install cuda

$dpkg -i ${CUDA_REPO_PKG}            
$apt-get update           
$apt-get -y install cuda          
$vim ~/.bashrc
Append the following two env paths:

$export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}
$export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
[Explanation]: ${PATH:+:${PATH}} means that if PATH exists and PATH is not null then append the directory ${PATH} to PATH.

Step2. install cuDNN v6.0

Install the compatible(with CUDA) cuDNN version:

$CUDNN_TAR_FILE="cudnn-8.0-linux-x64-v6.0.tgz"   
$wget http://developer.download.nvidia.com/compute/redist/cudnn/v6.0/${CUDNN_TAR_FILE}   
$tar -xzvf ${CUDNN_TAR_FILE}   
$cp -P cuda/include/cudnn.h /usr/local/cuda-8.0/include    
$cp -P cuda/lib64/libcudnn* /usr/local/cuda-8.0/lib64/   
$chmod a+r /usr/local/cuda-8.0/lib64/libcudnn*   

Step3. Set environment variables

Step4. Download and install anaconda

Download anaconda3:

$wget https://repo.continuum.io/archive/Anaconda3-2.4.0-Linux-x86_64.sh    

[Recommendation]:You can update conda to the lastest version using command as follow:

conda update conda

Step5. Install anaconda

$bash Anaconda3-2.4.0-Linux-x86_64.sh    

Notice:
Approve the licence at last and follow the installation navigation:
Do you approve the license terms? [yes|no]
[no] >>> yes

Step6. Create virtual envs

Add tsinghua conda source to accelerate the download speed.

$conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/    
$conda config --set show_channel_urls yes    

$conda create -n YOUR_ENV_NAME python=3.6   
$source activate YOUR_ENV_NAME    

Step7. Update the pip source to accelerate the download speed

$source activate YOUR_ENV_NAME
$mkdir .pip    
$vim .pip/pip.conf   

copy the following source to .pip/pip.conf

(Notice: Enter the insert mode(press key "i") before you copy the following source to ./pip/pip.conf):
"
[global]
index-url = http://mirrors.aliyun.com/pypi/simple/
[install]
trusted-host = mirrors.aliyun.com
"
After you copy this source to the pip.conf,press "esc" to escape from the insert mode(and enter into normal mode), and then type ":wq" to save ./pip/pip.conf and exit

then you can install the libs you need using pip install xxx(e.g. pip install opencv-python)

Step8. Install Pytorch

$pip install torch==1.2.0 torchvision==0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

Server Port Table

Server IP Port Owner Public
192.168.50.113 33010 None Yes
192.168.50.113 33020 Wenxiaobin No
192.168.50.113 33030 Zouzhongquan No
192.168.50.113 33040 RenHui Yes
192.168.50.113 33050 Not Allocated No
192.168.50.113 33060 TainLi No
192.168.50.113 33070 None Yes
192.168.50.113 33080 HeJiaLi Yes
192.168.50.113 33090 TangPing Yes
192.168.50.50 30320 RenHui Yes
192.168.50.50 31010 None Yes
192.168.50.50 31020 Wenxiaobin(Scorbin) Yes
192.168.50.50 31030 Yangxiaodi No
192.168.50.50 31040 Zouzhongquan No
192.168.50.50 31050 Hongxuesong No
192.168.50.50 31060 HeJiaLi Yes

Show tensorboard on your local machine

reference link[https://blog.csdn.net/bryant_meng/article/details/79153531]

Stuck at apt-get update

Sometimes you may encounter : 0%[working...] when you update the source using command

$ apt-get update

This problem probably stems from the directory: /etc/apt where apt-get update works

$ls /etc/apt/
apt.conf.d  auth.conf.d  preferences.d  sources.list source.list.d  trusted.gpg  trusted.gpg~

SOLUTION:

  • Find out the source you stuck when update ,for our cases,it's source.list.d,this directory stores additional source for some package.
$ rm -r /etc/apt/source.list.d
$ apt-get update

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published