-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8614466
commit e05067d
Showing
1 changed file
with
220 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
|
||
import argparse | ||
import os | ||
import time | ||
os.environ["KMP_DUPLICATE_LIB_OK"] = "True" | ||
from neuralplayground.agents.domine_2023_extras.class_grid_run_config import GridConfig | ||
|
||
from neuralplayground.agents import Domine2023 | ||
from neuralplayground.agents.domine_2023_extras.class_utils import ( | ||
rng_sequence_from_rng, | ||
set_device, | ||
) | ||
|
||
# @title Graph net functions | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--config_path", | ||
metavar="-C", | ||
default="domine_2023_extras/Different_seed_configs/class_config_1.yaml", | ||
help="path to base configuration file.", | ||
) | ||
|
||
args = parser.parse_args() | ||
set_device() | ||
config_class = GridConfig | ||
config = config_class(args.config_path) | ||
|
||
# Init environment | ||
arena_x_limits = [-100, 100] | ||
arena_y_limits = [-100, 100] | ||
|
||
|
||
agent_1 = Domine2023( | ||
experiment_name=config.experiment_name, | ||
train_on_shortest_path=config.train_on_shortest_path, | ||
resample=config.resample, # @param | ||
wandb_on=config.wandb_on, | ||
seed=config.seed, | ||
feature_position=config.feature_position, | ||
weighted=config.weighted, | ||
num_hidden=config.num_hidden, # @param | ||
num_layers=config.num_layers, # @param | ||
num_message_passing_steps=config.num_message_passing_steps, # @param | ||
learning_rate=config.learning_rate, # @param | ||
num_training_steps=config.num_training_steps, # @param | ||
batch_size=config.batch_size, | ||
nx_min=config.nx_min, | ||
nx_max=config.nx_max, | ||
batch_size_test=config.batch_size_test, | ||
nx_min_test=config.nx_min_test, | ||
nx_max_test=config.nx_max_test, | ||
arena_y_limits=arena_y_limits, | ||
arena_x_limits=arena_x_limits, | ||
residual=config.residual, | ||
layer_norm=config.layer_norm, | ||
) | ||
|
||
for n in range(config.num_training_steps): | ||
agent_1.update() | ||
|
||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--config_path", | ||
metavar="-C", | ||
default="domine_2023_extras/Different_seed_configs/class_config_2.yaml", | ||
help="path to base configuration file.", | ||
) | ||
args = parser.parse_args() | ||
config = config_class(args.config_path) | ||
agent_2 = Domine2023( | ||
experiment_name=config.experiment_name, | ||
train_on_shortest_path=config.train_on_shortest_path, | ||
resample=config.resample, # @param | ||
wandb_on=config.wandb_on, | ||
seed=config.seed, | ||
feature_position=config.feature_position, | ||
weighted=config.weighted, | ||
num_hidden=config.num_hidden, # @param | ||
num_layers=config.num_layers, # @param | ||
num_message_passing_steps=config.num_message_passing_steps, # @param | ||
learning_rate=config.learning_rate, # @param | ||
num_training_steps=config.num_training_steps, # @param | ||
batch_size=config.batch_size, | ||
nx_min=config.nx_min, | ||
nx_max=config.nx_max, | ||
batch_size_test=config.batch_size_test, | ||
nx_min_test=config.nx_min_test, | ||
nx_max_test=config.nx_max_test, | ||
arena_y_limits=arena_y_limits, | ||
arena_x_limits=arena_x_limits, | ||
residual=config.residual, | ||
layer_norm=config.layer_norm, | ||
) | ||
|
||
for n in range(config.num_training_steps): | ||
agent_2.update() | ||
|
||
|
||
|
||
import statistics | ||
print(statistics.mean([agent_1.roc_aucs_train,agent_2.roc_aucs_train])) | ||
print(statistics.stdev([agent_1.roc_aucs_train,agent_2.roc_aucs_train])) | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--config_path", | ||
metavar="-C", | ||
default="domine_2023_extras/Different_seed_configs/class_config_3.yaml", | ||
help="path to base configuration file.", | ||
) | ||
args = parser.parse_args() | ||
config = config_class(args.config_path) | ||
agent_3 = Domine2023( | ||
experiment_name=config.experiment_name, | ||
train_on_shortest_path=config.train_on_shortest_path, | ||
resample=config.resample, # @param | ||
wandb_on=config.wandb_on, | ||
seed=config.seed, | ||
feature_position=config.feature_position, | ||
weighted=config.weighted, | ||
num_hidden=config.num_hidden, # @param | ||
num_layers=config.num_layers, # @param | ||
num_message_passing_steps=config.num_message_passing_steps, # @param | ||
learning_rate=config.learning_rate, # @param | ||
num_training_steps=config.num_training_steps, # @param | ||
batch_size=config.batch_size, | ||
nx_min=config.nx_min, | ||
nx_max=config.nx_max, | ||
batch_size_test=config.batch_size_test, | ||
nx_min_test=config.nx_min_test, | ||
nx_max_test=config.nx_max_test, | ||
arena_y_limits=arena_y_limits, | ||
arena_x_limits=arena_x_limits, | ||
residual=config.residual, | ||
layer_norm=config.layer_norm, | ||
) | ||
|
||
for n in range(config.num_training_steps): | ||
agent_3.update() | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--config_path", | ||
metavar="-C", | ||
default="domine_2023_extras/Different_seed_configs/class_config_4.yaml", | ||
help="path to base configuration file.", | ||
) | ||
args = parser.parse_args() | ||
config = config_class(args.config_path) | ||
agent_4 = Domine2023( | ||
experiment_name=config.experiment_name, | ||
train_on_shortest_path=config.train_on_shortest_path, | ||
resample=config.resample, # @param | ||
wandb_on=config.wandb_on, | ||
seed=config.seed, | ||
feature_position=config.feature_position, | ||
weighted=config.weighted, | ||
num_hidden=config.num_hidden, # @param | ||
num_layers=config.num_layers, # @param | ||
num_message_passing_steps=config.num_message_passing_steps, # @param | ||
learning_rate=config.learning_rate, # @param | ||
num_training_steps=config.num_training_steps, # @param | ||
batch_size=config.batch_size, | ||
nx_min=config.nx_min, | ||
nx_max=config.nx_max, | ||
batch_size_test=config.batch_size_test, | ||
nx_min_test=config.nx_min_test, | ||
nx_max_test=config.nx_max_test, | ||
arena_y_limits=arena_y_limits, | ||
arena_x_limits=arena_x_limits, | ||
residual=config.residual, | ||
layer_norm=config.layer_norm, | ||
) | ||
|
||
for n in range(config.num_training_steps): | ||
agent_4.update() | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--config_path", | ||
metavar="-C", | ||
default="domine_2023_extras/Different_seed_configs/class_config_5.yaml", | ||
help="path to base configuration file.", | ||
) | ||
args = parser.parse_args() | ||
config = config_class(args.config_path) | ||
agent_5 = Domine2023( | ||
experiment_name=config.experiment_name, | ||
train_on_shortest_path=config.train_on_shortest_path, | ||
resample=config.resample, # @param | ||
wandb_on=config.wandb_on, | ||
seed=config.seed, | ||
feature_position=config.feature_position, | ||
weighted=config.weighted, | ||
num_hidden=config.num_hidden, # @param | ||
num_layers=config.num_layers, # @param | ||
num_message_passing_steps=config.num_message_passing_steps, # @param | ||
learning_rate=config.learning_rate, # @param | ||
num_training_steps=config.num_training_steps, # @param | ||
batch_size=config.batch_size, | ||
nx_min=config.nx_min, | ||
nx_max=config.nx_max, | ||
batch_size_test=config.batch_size_test, | ||
nx_min_test=config.nx_min_test, | ||
nx_max_test=config.nx_max_test, | ||
arena_y_limits=arena_y_limits, | ||
arena_x_limits=arena_x_limits, | ||
residual=config.residual, | ||
layer_norm=config.layer_norm, | ||
) | ||
|
||
for n in range(config.num_training_steps): | ||
agent_5.update() | ||
|
||
|
||
|
||
import statistics | ||
print(statistics.mean([agent_1.roc_aucs_train,agent_2.roc_aucs_train,agent_3.roc_aucs_train,agent_4.roc_aucs_train,agent_5.roc_aucs_train])) | ||
print(statistics.stdev([agent_1.roc_aucs_train,agent_2.roc_aucs_train,agent_3.roc_aucs_train,agent_4.roc_aucs_train,agent_5.roc_aucs_train])) |