Skip to content

ylongqi/podcast-data-modeling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Podcast data modeling

This repository contains a podcast dataset and an implementation of the Adversarial Learning-based Podcast Representation (ALPR) introduced in the following paper:

Longqi Yang, Yu Wang, Drew Dunne, Michael Sobolev, Mor Naaman and Deborah Estrin. 2018. More than Just Words: Modeling Non-textual Characteristics of Podcasts. In Proceedings of WSDM’19.

A pretrained model is also included. Please direct any questions to Longqi Yang.

If you use this data or algorithm, please cite:

@inproceedings{yang2019podcast,
  title={More than Just Words: Modeling Non-textual Characteristics of Podcasts},
  author={Yang, Longqi and Wang, Yu and Dunne, Drew and Sobolev, Michael and Naaman, Mor and Estrin, Deborah},
  booktitle={Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining},
  year={2019},
  organization={ACM}
}

Code descriptions

  • Converting a WAV audio into a Mel-Spectrogram: wav_to_spectrogram.py.
  • Training ALPR: alpr.py (The files variable needs to be specified - it should contain a list of spectrogram files).
  • Extracting ALPR using a pretrained model: alpr_extractor.py.
  • Reproducing experimental results: energy_prediction.ipynb.

Data descriptions

Raw podcast audio URLs

Each line of these files contains an podcast episode represented by a JSON object with the following fields:

{
    "url": the URL to download the raw audio,
    "itunes_channel_id": the iTunes channel that the episode belongs to,
    "id": a unique epsiode ID,
    "title": the title of the episode
}

Prediction labels

Prediction features and raw audio (caveats: files are large)

  • Energy and seriousness predictions:
    • Spectrograms:
      data/attributes_prediction_spectrograms/e_[episode id]_[offset].npy
      
    • Raw audio:
      data/attributes_prediction_raw_audio/e_[episode id]_[offset].wav
      
  • Popularity prediction:
    • Spectrograms:

      data/popularity_prediction_spectrograms/e_[episode id]_[0 -- length-1].npy
      
    • Transcriptions:

      data/popularity_prediction_transcriptions/e_[episode id].txt
      
      • A transcription file lists transcribed words with the following format (a word per line):

      a spoken word \t starting time (ms) \t end time (ms)

    • Raw audio:

      data/popularity_prediction_raw_audio/e_[episode id]_[0 -- length-1].wav
      

Reproducing experimental results using the pretrained model

from alpr_extractor import ALPRExtractor

extractor = ALPRExtractor()
extractor.load_model(path='pretrained_model/alpr')
features = extractor.forward((spectrograms + 2) / 2)