forked from meiqua/shape_based_matching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
line2Dup.cpp
1448 lines (1227 loc) · 50.7 KB
/
line2Dup.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "line2Dup.h"
#include <iostream>
using namespace std;
using namespace cv;
#include <chrono>
class Timer
{
public:
Timer() : beg_(clock_::now()) {}
void reset() { beg_ = clock_::now(); }
double elapsed() const {
return std::chrono::duration_cast<second_>
(clock_::now() - beg_).count(); }
void out(std::string message = ""){
double t = elapsed();
std::cout << message << "\nelasped time:" << t << "s\n" << std::endl;
reset();
}
private:
typedef std::chrono::high_resolution_clock clock_;
typedef std::chrono::duration<double, std::ratio<1> > second_;
std::chrono::time_point<clock_> beg_;
};
namespace line2Dup
{
/**
* \brief Get the label [0,8) of the single bit set in quantized.
*/
static inline int getLabel(int quantized)
{
switch (quantized)
{
case 1:
return 0;
case 2:
return 1;
case 4:
return 2;
case 8:
return 3;
case 16:
return 4;
case 32:
return 5;
case 64:
return 6;
case 128:
return 7;
default:
CV_Error(Error::StsBadArg, "Invalid value of quantized parameter");
return -1; //avoid warning
}
}
void Feature::read(const FileNode &fn)
{
FileNodeIterator fni = fn.begin();
fni >> x >> y >> label;
}
void Feature::write(FileStorage &fs) const
{
fs << "[:" << x << y << label << "]";
}
void Template::read(const FileNode &fn)
{
width = fn["width"];
height = fn["height"];
tl_x = fn["tl_x"];
tl_y = fn["tl_y"];
pyramid_level = fn["pyramid_level"];
FileNode features_fn = fn["features"];
features.resize(features_fn.size());
FileNodeIterator it = features_fn.begin(), it_end = features_fn.end();
for (int i = 0; it != it_end; ++it, ++i)
{
features[i].read(*it);
}
}
void Template::write(FileStorage &fs) const
{
fs << "width" << width;
fs << "height" << height;
fs << "tl_x" << tl_x;
fs << "tl_y" << tl_y;
fs << "pyramid_level" << pyramid_level;
fs << "features"
<< "[";
for (int i = 0; i < (int)features.size(); ++i)
{
features[i].write(fs);
}
fs << "]"; // features
}
static Rect cropTemplates(std::vector<Template> &templates)
{
int min_x = std::numeric_limits<int>::max();
int min_y = std::numeric_limits<int>::max();
int max_x = std::numeric_limits<int>::min();
int max_y = std::numeric_limits<int>::min();
// First pass: find min/max feature x,y over all pyramid levels and modalities
for (int i = 0; i < (int)templates.size(); ++i)
{
Template &templ = templates[i];
for (int j = 0; j < (int)templ.features.size(); ++j)
{
int x = templ.features[j].x << templ.pyramid_level;
int y = templ.features[j].y << templ.pyramid_level;
min_x = std::min(min_x, x);
min_y = std::min(min_y, y);
max_x = std::max(max_x, x);
max_y = std::max(max_y, y);
}
}
/// @todo Why require even min_x, min_y?
if (min_x % 2 == 1)
--min_x;
if (min_y % 2 == 1)
--min_y;
// Second pass: set width/height and shift all feature positions
for (int i = 0; i < (int)templates.size(); ++i)
{
Template &templ = templates[i];
templ.width = (max_x - min_x) >> templ.pyramid_level;
templ.height = (max_y - min_y) >> templ.pyramid_level;
templ.tl_x = min_x >> templ.pyramid_level;
templ.tl_y = min_y >> templ.pyramid_level;
for (int j = 0; j < (int)templ.features.size(); ++j)
{
templ.features[j].x -= templ.tl_x;
templ.features[j].y -= templ.tl_y;
}
}
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
}
bool ColorGradientPyramid::selectScatteredFeatures(const std::vector<Candidate> &candidates,
std::vector<Feature> &features,
size_t num_features, float distance)
{
features.clear();
float distance_sq = distance * distance;
int i = 0;
bool first_select = true;
while(true)
{
Candidate c = candidates[i];
// Add if sufficient distance away from any previously chosen feature
bool keep = true;
for (int j = 0; (j < (int)features.size()) && keep; ++j)
{
Feature f = features[j];
keep = (c.f.x - f.x) * (c.f.x - f.x) + (c.f.y - f.y) * (c.f.y - f.y) >= distance_sq;
}
if (keep)
features.push_back(c.f);
if (++i == (int)candidates.size()){
bool num_ok = features.size() >= num_features;
if(first_select){
if(num_ok){
features.clear(); // we don't want too many first time
i = 0;
distance += 1.0f;
distance_sq = distance * distance;
continue;
}else{
first_select = false;
}
}
// Start back at beginning, and relax required distance
i = 0;
distance -= 1.0f;
distance_sq = distance * distance;
if (num_ok || distance < 3){
break;
}
}
}
if (features.size() >= num_features)
{
return true;
}
else
{
std::cout << "this templ has no enough features, but we let it go" << std::endl;
return true;
}
}
/****************************************************************************************\
* Color gradient ColorGradient *
\****************************************************************************************/
void hysteresisGradient(Mat &magnitude, Mat &quantized_angle,
Mat &angle, float threshold)
{
// Quantize 360 degree range of orientations into 16 buckets
// Note that [0, 11.25), [348.75, 360) both get mapped in the end to label 0,
// for stability of horizontal and vertical features.
Mat_<unsigned char> quantized_unfiltered;
angle.convertTo(quantized_unfiltered, CV_8U, 16.0 / 360.0);
// Zero out top and bottom rows
/// @todo is this necessary, or even correct?
memset(quantized_unfiltered.ptr(), 0, quantized_unfiltered.cols);
memset(quantized_unfiltered.ptr(quantized_unfiltered.rows - 1), 0, quantized_unfiltered.cols);
// Zero out first and last columns
for (int r = 0; r < quantized_unfiltered.rows; ++r)
{
quantized_unfiltered(r, 0) = 0;
quantized_unfiltered(r, quantized_unfiltered.cols - 1) = 0;
}
// Mask 16 buckets into 8 quantized orientations
for (int r = 1; r < angle.rows - 1; ++r)
{
uchar *quant_r = quantized_unfiltered.ptr<uchar>(r);
for (int c = 1; c < angle.cols - 1; ++c)
{
quant_r[c] &= 7;
}
}
// Filter the raw quantized image. Only accept pixels where the magnitude is above some
// threshold, and there is local agreement on the quantization.
quantized_angle = Mat::zeros(angle.size(), CV_8U);
for (int r = 1; r < angle.rows - 1; ++r)
{
float *mag_r = magnitude.ptr<float>(r);
for (int c = 1; c < angle.cols - 1; ++c)
{
if (mag_r[c] > threshold)
{
// Compute histogram of quantized bins in 3x3 patch around pixel
int histogram[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uchar *patch3x3_row = &quantized_unfiltered(r - 1, c - 1);
histogram[patch3x3_row[0]]++;
histogram[patch3x3_row[1]]++;
histogram[patch3x3_row[2]]++;
patch3x3_row += quantized_unfiltered.step1();
histogram[patch3x3_row[0]]++;
histogram[patch3x3_row[1]]++;
histogram[patch3x3_row[2]]++;
patch3x3_row += quantized_unfiltered.step1();
histogram[patch3x3_row[0]]++;
histogram[patch3x3_row[1]]++;
histogram[patch3x3_row[2]]++;
// Find bin with the most votes from the patch
int max_votes = 0;
int index = -1;
for (int i = 0; i < 8; ++i)
{
if (max_votes < histogram[i])
{
index = i;
max_votes = histogram[i];
}
}
// Only accept the quantization if majority of pixels in the patch agree
static const int NEIGHBOR_THRESHOLD = 5;
if (max_votes >= NEIGHBOR_THRESHOLD)
quantized_angle.at<uchar>(r, c) = uchar(1 << index);
}
}
}
}
static void quantizedOrientations(const Mat &src, Mat &magnitude,
Mat &angle, float threshold)
{
Mat smoothed;
// Compute horizontal and vertical image derivatives on all color channels separately
static const int KERNEL_SIZE = 7;
// For some reason cvSmooth/cv::GaussianBlur, cvSobel/cv::Sobel have different defaults for border handling...
GaussianBlur(src, smoothed, Size(KERNEL_SIZE, KERNEL_SIZE), 0, 0, BORDER_REPLICATE);
if(src.channels() == 1){
Mat sobel_dx, sobel_dy, sobel_ag;
Sobel(smoothed, sobel_dx, CV_32F, 1, 0, 3, 1.0, 0.0, BORDER_REPLICATE);
Sobel(smoothed, sobel_dy, CV_32F, 0, 1, 3, 1.0, 0.0, BORDER_REPLICATE);
magnitude = sobel_dx.mul(sobel_dx) + sobel_dy.mul(sobel_dy);
phase(sobel_dx, sobel_dy, sobel_ag, true);
hysteresisGradient(magnitude, angle, sobel_ag, threshold * threshold);
}else{
magnitude.create(src.size(), CV_32F);
// Allocate temporary buffers
Size size = src.size();
Mat sobel_3dx; // per-channel horizontal derivative
Mat sobel_3dy; // per-channel vertical derivative
Mat sobel_dx(size, CV_32F); // maximum horizontal derivative
Mat sobel_dy(size, CV_32F); // maximum vertical derivative
Mat sobel_ag; // final gradient orientation (unquantized)
Sobel(smoothed, sobel_3dx, CV_16S, 1, 0, 3, 1.0, 0.0, BORDER_REPLICATE);
Sobel(smoothed, sobel_3dy, CV_16S, 0, 1, 3, 1.0, 0.0, BORDER_REPLICATE);
short *ptrx = (short *)sobel_3dx.data;
short *ptry = (short *)sobel_3dy.data;
float *ptr0x = (float *)sobel_dx.data;
float *ptr0y = (float *)sobel_dy.data;
float *ptrmg = (float *)magnitude.data;
const int length1 = static_cast<const int>(sobel_3dx.step1());
const int length2 = static_cast<const int>(sobel_3dy.step1());
const int length3 = static_cast<const int>(sobel_dx.step1());
const int length4 = static_cast<const int>(sobel_dy.step1());
const int length5 = static_cast<const int>(magnitude.step1());
const int length0 = sobel_3dy.cols * 3;
for (int r = 0; r < sobel_3dy.rows; ++r)
{
int ind = 0;
for (int i = 0; i < length0; i += 3)
{
// Use the gradient orientation of the channel whose magnitude is largest
int mag1 = ptrx[i + 0] * ptrx[i + 0] + ptry[i + 0] * ptry[i + 0];
int mag2 = ptrx[i + 1] * ptrx[i + 1] + ptry[i + 1] * ptry[i + 1];
int mag3 = ptrx[i + 2] * ptrx[i + 2] + ptry[i + 2] * ptry[i + 2];
if (mag1 >= mag2 && mag1 >= mag3)
{
ptr0x[ind] = ptrx[i];
ptr0y[ind] = ptry[i];
ptrmg[ind] = (float)mag1;
}
else if (mag2 >= mag1 && mag2 >= mag3)
{
ptr0x[ind] = ptrx[i + 1];
ptr0y[ind] = ptry[i + 1];
ptrmg[ind] = (float)mag2;
}
else
{
ptr0x[ind] = ptrx[i + 2];
ptr0y[ind] = ptry[i + 2];
ptrmg[ind] = (float)mag3;
}
++ind;
}
ptrx += length1;
ptry += length2;
ptr0x += length3;
ptr0y += length4;
ptrmg += length5;
}
// Calculate the final gradient orientations
phase(sobel_dx, sobel_dy, sobel_ag, true);
hysteresisGradient(magnitude, angle, sobel_ag, threshold * threshold);
}
}
ColorGradientPyramid::ColorGradientPyramid(const Mat &_src, const Mat &_mask,
float _weak_threshold, size_t _num_features,
float _strong_threshold)
: src(_src),
mask(_mask),
pyramid_level(0),
weak_threshold(_weak_threshold),
num_features(_num_features),
strong_threshold(_strong_threshold)
{
update();
}
void ColorGradientPyramid::update()
{
quantizedOrientations(src, magnitude, angle, weak_threshold);
}
void ColorGradientPyramid::pyrDown()
{
// Some parameters need to be adjusted
num_features /= 2; /// @todo Why not 4?
++pyramid_level;
// Downsample the current inputs
Size size(src.cols / 2, src.rows / 2);
Mat next_src;
cv::pyrDown(src, next_src, size);
src = next_src;
if (!mask.empty())
{
Mat next_mask;
resize(mask, next_mask, size, 0.0, 0.0, INTER_NEAREST);
mask = next_mask;
}
update();
}
void ColorGradientPyramid::quantize(Mat &dst) const
{
dst = Mat::zeros(angle.size(), CV_8U);
angle.copyTo(dst, mask);
}
bool ColorGradientPyramid::extractTemplate(Template &templ) const
{
// Want features on the border to distinguish from background
Mat local_mask;
if (!mask.empty())
{
erode(mask, local_mask, Mat(), Point(-1, -1), 1, BORDER_REPLICATE);
// subtract(mask, local_mask, local_mask);
}
std::vector<Candidate> candidates;
bool no_mask = local_mask.empty();
float threshold_sq = strong_threshold * strong_threshold;
int nms_kernel_size = 5;
cv::Mat magnitude_valid = cv::Mat(magnitude.size(), CV_8UC1, cv::Scalar(255));
for (int r = 0+nms_kernel_size/2; r < magnitude.rows-nms_kernel_size/2; ++r)
{
const uchar *mask_r = no_mask ? NULL : local_mask.ptr<uchar>(r);
for (int c = 0+nms_kernel_size/2; c < magnitude.cols-nms_kernel_size/2; ++c)
{
if (no_mask || mask_r[c])
{
float score = 0;
if(magnitude_valid.at<uchar>(r, c)>0){
score = magnitude.at<float>(r, c);
bool is_max = true;
for(int r_offset = -nms_kernel_size/2; r_offset <= nms_kernel_size/2; r_offset++){
for(int c_offset = -nms_kernel_size/2; c_offset <= nms_kernel_size/2; c_offset++){
if(r_offset == 0 && c_offset == 0) continue;
if(score < magnitude.at<float>(r+r_offset, c+c_offset)){
score = 0;
is_max = false;
break;
}
}
}
if(is_max){
for(int r_offset = -nms_kernel_size/2; r_offset <= nms_kernel_size/2; r_offset++){
for(int c_offset = -nms_kernel_size/2; c_offset <= nms_kernel_size/2; c_offset++){
if(r_offset == 0 && c_offset == 0) continue;
magnitude_valid.at<uchar>(r+r_offset, c+c_offset) = 0;
}
}
}
}
if (score > threshold_sq && angle.at<uchar>(r, c) > 0)
{
candidates.push_back(Candidate(c, r, getLabel(angle.at<uchar>(r, c)), score));
}
}
}
}
// We require a certain number of features
if (candidates.size() < num_features)
return false;
// NOTE: Stable sort to agree with old code, which used std::list::sort()
std::stable_sort(candidates.begin(), candidates.end());
// Use heuristic based on surplus of candidates in narrow outline for initial distance threshold
float distance = static_cast<float>(candidates.size() / num_features + 1);
if (!selectScatteredFeatures(candidates, templ.features, num_features, distance))
{
return false;
}
// Size determined externally, needs to match templates for other modalities
templ.width = -1;
templ.height = -1;
templ.pyramid_level = pyramid_level;
return true;
}
ColorGradient::ColorGradient()
: weak_threshold(30.0f),
num_features(63),
strong_threshold(60.0f)
{
}
ColorGradient::ColorGradient(float _weak_threshold, size_t _num_features, float _strong_threshold)
: weak_threshold(_weak_threshold),
num_features(_num_features),
strong_threshold(_strong_threshold)
{
}
static const char CG_NAME[] = "ColorGradient";
std::string ColorGradient::name() const
{
return CG_NAME;
}
void ColorGradient::read(const FileNode &fn)
{
String type = fn["type"];
CV_Assert(type == CG_NAME);
weak_threshold = fn["weak_threshold"];
num_features = int(fn["num_features"]);
strong_threshold = fn["strong_threshold"];
}
void ColorGradient::write(FileStorage &fs) const
{
fs << "type" << CG_NAME;
fs << "weak_threshold" << weak_threshold;
fs << "num_features" << int(num_features);
fs << "strong_threshold" << strong_threshold;
}
/****************************************************************************************\
* Response maps *
\****************************************************************************************/
static void orUnaligned8u(const uchar *src, const int src_stride,
uchar *dst, const int dst_stride,
const int width, const int height)
{
for (int r = 0; r < height; ++r)
{
int c = 0;
// not aligned, which will happen because we move 1 bytes a time for spreading
while (reinterpret_cast<unsigned long long>(src + c) % 16 != 0) {
dst[c] |= src[c];
c++;
}
// avoid out of bound when can't divid
// note: can't use c<width !!!
for (; c <= width-mipp::N<uint8_t>(); c+=mipp::N<uint8_t>()){
mipp::Reg<uint8_t> src_v((uint8_t*)src + c);
mipp::Reg<uint8_t> dst_v((uint8_t*)dst + c);
mipp::Reg<uint8_t> res_v = mipp::orb(src_v, dst_v);
res_v.store((uint8_t*)dst + c);
}
for(; c<width; c++)
dst[c] |= src[c];
// Advance to next row
src += src_stride;
dst += dst_stride;
}
}
static void spread(const Mat &src, Mat &dst, int T)
{
// Allocate and zero-initialize spread (OR'ed) image
dst = Mat::zeros(src.size(), CV_8U);
// Fill in spread gradient image (section 2.3)
for (int r = 0; r < T; ++r)
{
for (int c = 0; c < T; ++c)
{
orUnaligned8u(&src.at<unsigned char>(r, c), static_cast<const int>(src.step1()), dst.ptr(),
static_cast<const int>(dst.step1()), src.cols - c, src.rows - r);
}
}
}
// 1,2-->0 3-->1
CV_DECL_ALIGNED(16)
static const unsigned char SIMILARITY_LUT[256] = {0, 4, 1, 4, 0, 4, 1, 4, 0, 4, 1, 4, 0, 4, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 4, 4, 1, 1, 4, 4, 0, 1, 4, 4, 1, 1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 4, 1, 4, 0, 4, 1, 4, 0, 4, 1, 4, 0, 4, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 4, 1, 1, 4, 4, 0, 1, 4, 4, 1, 1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 4, 4, 4, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4};
static void computeResponseMaps(const Mat &src, std::vector<Mat> &response_maps)
{
CV_Assert((src.rows * src.cols) % 16 == 0);
// Allocate response maps
response_maps.resize(8);
for (int i = 0; i < 8; ++i)
response_maps[i].create(src.size(), CV_8U);
Mat lsb4(src.size(), CV_8U);
Mat msb4(src.size(), CV_8U);
for (int r = 0; r < src.rows; ++r)
{
const uchar *src_r = src.ptr(r);
uchar *lsb4_r = lsb4.ptr(r);
uchar *msb4_r = msb4.ptr(r);
for (int c = 0; c < src.cols; ++c)
{
// Least significant 4 bits of spread image pixel
lsb4_r[c] = src_r[c] & 15;
// Most significant 4 bits, right-shifted to be in [0, 16)
msb4_r[c] = (src_r[c] & 240) >> 4;
}
}
{
uchar *lsb4_data = lsb4.ptr<uchar>();
uchar *msb4_data = msb4.ptr<uchar>();
bool no_max = true;
bool no_shuff = true;
#ifdef has_max_int8_t
no_max = false;
#endif
#ifdef has_shuff_int8_t
no_shuff = false;
#endif
// LUT is designed for 128 bits SIMD, so quite triky for others
// For each of the 8 quantized orientations...
for (int ori = 0; ori < 8; ++ori){
uchar *map_data = response_maps[ori].ptr<uchar>();
const uchar *lut_low = SIMILARITY_LUT + 32 * ori;
if(mipp::N<uint8_t>() == 1 || no_max || no_shuff){ // no SIMD
for (int i = 0; i < src.rows * src.cols; ++i)
map_data[i] = std::max(lut_low[lsb4_data[i]], lut_low[msb4_data[i] + 16]);
}
else if(mipp::N<uint8_t>() == 16){ // 128 SIMD, no add base
const uchar *lut_low = SIMILARITY_LUT + 32 * ori;
mipp::Reg<uint8_t> lut_low_v((uint8_t*)lut_low);
mipp::Reg<uint8_t> lut_high_v((uint8_t*)lut_low + 16);
for (int i = 0; i < src.rows * src.cols; i += mipp::N<uint8_t>()){
mipp::Reg<uint8_t> low_mask((uint8_t*)lsb4_data + i);
mipp::Reg<uint8_t> high_mask((uint8_t*)msb4_data + i);
mipp::Reg<uint8_t> low_res = mipp::shuff(lut_low_v, low_mask);
mipp::Reg<uint8_t> high_res = mipp::shuff(lut_high_v, high_mask);
mipp::Reg<uint8_t> result = mipp::max(low_res, high_res);
result.store((uint8_t*)map_data + i);
}
}
else if(mipp::N<uint8_t>() == 16 || mipp::N<uint8_t>() == 32
|| mipp::N<uint8_t>() == 64){ //128 256 512 SIMD
CV_Assert((src.rows * src.cols) % mipp::N<uint8_t>() == 0);
uint8_t lut_temp[mipp::N<uint8_t>()] = {0};
for(int slice=0; slice<mipp::N<uint8_t>()/16; slice++){
std::copy_n(lut_low, 16, lut_temp+slice*16);
}
mipp::Reg<uint8_t> lut_low_v(lut_temp);
uint8_t base_add_array[mipp::N<uint8_t>()] = {0};
for(uint8_t slice=0; slice<mipp::N<uint8_t>(); slice+=16){
std::copy_n(lut_low+16, 16, lut_temp+slice);
std::fill_n(base_add_array+slice, 16, slice);
}
mipp::Reg<uint8_t> base_add(base_add_array);
mipp::Reg<uint8_t> lut_high_v(lut_temp);
for (int i = 0; i < src.rows * src.cols; i += mipp::N<uint8_t>()){
mipp::Reg<uint8_t> mask_low_v((uint8_t*)lsb4_data+i);
mipp::Reg<uint8_t> mask_high_v((uint8_t*)msb4_data+i);
mask_low_v += base_add;
mask_high_v += base_add;
mipp::Reg<uint8_t> shuff_low_result = mipp::shuff(lut_low_v, mask_low_v);
mipp::Reg<uint8_t> shuff_high_result = mipp::shuff(lut_high_v, mask_high_v);
mipp::Reg<uint8_t> result = mipp::max(shuff_low_result, shuff_high_result);
result.store((uint8_t*)map_data + i);
}
}
else{
for (int i = 0; i < src.rows * src.cols; ++i)
map_data[i] = std::max(lut_low[lsb4_data[i]], lut_low[msb4_data[i] + 16]);
}
}
}
}
static void linearize(const Mat &response_map, Mat &linearized, int T)
{
CV_Assert(response_map.rows % T == 0);
CV_Assert(response_map.cols % T == 0);
// linearized has T^2 rows, where each row is a linear memory
int mem_width = response_map.cols / T;
int mem_height = response_map.rows / T;
linearized.create(T * T, mem_width * mem_height, CV_8U);
// Outer two for loops iterate over top-left T^2 starting pixels
int index = 0;
for (int r_start = 0; r_start < T; ++r_start)
{
for (int c_start = 0; c_start < T; ++c_start)
{
uchar *memory = linearized.ptr(index);
++index;
// Inner two loops copy every T-th pixel into the linear memory
for (int r = r_start; r < response_map.rows; r += T)
{
const uchar *response_data = response_map.ptr(r);
for (int c = c_start; c < response_map.cols; c += T)
*memory++ = response_data[c];
}
}
}
}
/****************************************************************************************\
* Linearized similarities *
\****************************************************************************************/
static const unsigned char *accessLinearMemory(const std::vector<Mat> &linear_memories,
const Feature &f, int T, int W)
{
// Retrieve the TxT grid of linear memories associated with the feature label
const Mat &memory_grid = linear_memories[f.label];
CV_DbgAssert(memory_grid.rows == T * T);
CV_DbgAssert(f.x >= 0);
CV_DbgAssert(f.y >= 0);
// The LM we want is at (x%T, y%T) in the TxT grid (stored as the rows of memory_grid)
int grid_x = f.x % T;
int grid_y = f.y % T;
int grid_index = grid_y * T + grid_x;
CV_DbgAssert(grid_index >= 0);
CV_DbgAssert(grid_index < memory_grid.rows);
const unsigned char *memory = memory_grid.ptr(grid_index);
// Within the LM, the feature is at (x/T, y/T). W is the "width" of the LM, the
// input image width decimated by T.
int lm_x = f.x / T;
int lm_y = f.y / T;
int lm_index = lm_y * W + lm_x;
CV_DbgAssert(lm_index >= 0);
CV_DbgAssert(lm_index < memory_grid.cols);
return memory + lm_index;
}
static void similarity(const std::vector<Mat> &linear_memories, const Template &templ,
Mat &dst, Size size, int T)
{
// we only have one modality, so 8192*2, due to mipp, back to 8192
CV_Assert(templ.features.size() < 8192);
// Decimate input image size by factor of T
int W = size.width / T;
int H = size.height / T;
// Feature dimensions, decimated by factor T and rounded up
int wf = (templ.width - 1) / T + 1;
int hf = (templ.height - 1) / T + 1;
// Span is the range over which we can shift the template around the input image
int span_x = W - wf;
int span_y = H - hf;
int template_positions = span_y * W + span_x + 1; // why add 1?
dst = Mat::zeros(H, W, CV_16U);
short *dst_ptr = dst.ptr<short>();
mipp::Reg<uint8_t> zero_v(uint8_t(0));
for (int i = 0; i < (int)templ.features.size(); ++i)
{
Feature f = templ.features[i];
if (f.x < 0 || f.x >= size.width || f.y < 0 || f.y >= size.height)
continue;
const uchar *lm_ptr = accessLinearMemory(linear_memories, f, T, W);
int j = 0;
// *2 to avoid int8 read out of range
for(; j <= template_positions -mipp::N<int16_t>()*2; j+=mipp::N<int16_t>()){
mipp::Reg<uint8_t> src8_v((uint8_t*)lm_ptr + j);
// uchar to short, once for N bytes
mipp::Reg<int16_t> src16_v(mipp::interleavelo(src8_v, zero_v).r);
mipp::Reg<int16_t> dst_v((int16_t*)dst_ptr + j);
mipp::Reg<int16_t> res_v = src16_v + dst_v;
res_v.store((int16_t*)dst_ptr + j);
}
for(; j<template_positions; j++)
dst_ptr[j] += short(lm_ptr[j]);
}
}
static void similarityLocal(const std::vector<Mat> &linear_memories, const Template &templ,
Mat &dst, Size size, int T, Point center)
{
CV_Assert(templ.features.size() < 8192);
int W = size.width / T;
dst = Mat::zeros(16, 16, CV_16U);
int offset_x = (center.x / T - 8) * T;
int offset_y = (center.y / T - 8) * T;
mipp::Reg<uint8_t> zero_v = uint8_t(0);
for (int i = 0; i < (int)templ.features.size(); ++i)
{
Feature f = templ.features[i];
f.x += offset_x;
f.y += offset_y;
// Discard feature if out of bounds, possibly due to applying the offset
if (f.x < 0 || f.y < 0 || f.x >= size.width || f.y >= size.height)
continue;
const uchar *lm_ptr = accessLinearMemory(linear_memories, f, T, W);
{
short *dst_ptr = dst.ptr<short>();
if(mipp::N<uint8_t>() > 32){ //512 bits SIMD
for (int row = 0; row < 16; row += mipp::N<int16_t>()/16){
mipp::Reg<int16_t> dst_v((int16_t*)dst_ptr + row*16);
// load lm_ptr, 16 bytes once, for half
uint8_t local_v[mipp::N<uint8_t>()] = {0};
for(int slice=0; slice<mipp::N<uint8_t>()/16/2; slice++){
std::copy_n(lm_ptr, 16, &local_v[16*slice]);
lm_ptr += W;
}
mipp::Reg<uint8_t> src8_v(local_v);
// uchar to short, once for N bytes
mipp::Reg<int16_t> src16_v(mipp::interleavelo(src8_v, zero_v).r);
mipp::Reg<int16_t> res_v = src16_v + dst_v;
res_v.store((int16_t*)dst_ptr);
dst_ptr += mipp::N<int16_t>();
}
}else{ // 256 128 or no SIMD
for (int row = 0; row < 16; ++row){
for(int col=0; col<16; col+=mipp::N<int16_t>()){
mipp::Reg<uint8_t> src8_v((uint8_t*)lm_ptr + col);
// uchar to short, once for N bytes
mipp::Reg<int16_t> src16_v(mipp::interleavelo(src8_v, zero_v).r);
mipp::Reg<int16_t> dst_v((int16_t*)dst_ptr + col);
mipp::Reg<int16_t> res_v = src16_v + dst_v;
res_v.store((int16_t*)dst_ptr + col);
}
dst_ptr += 16;
lm_ptr += W;
}
}
}
}
}
static void similarity_64(const std::vector<Mat> &linear_memories, const Template &templ,
Mat &dst, Size size, int T)
{
// 63 features or less is a special case because the max similarity per-feature is 4.
// 255/4 = 63, so up to that many we can add up similarities in 8 bits without worrying
// about overflow. Therefore here we use _mm_add_epi8 as the workhorse, whereas a more
// general function would use _mm_add_epi16.
CV_Assert(templ.features.size() < 64);
/// @todo Handle more than 255/MAX_RESPONSE features!!
// Decimate input image size by factor of T
int W = size.width / T;
int H = size.height / T;
// Feature dimensions, decimated by factor T and rounded up
int wf = (templ.width - 1) / T + 1;
int hf = (templ.height - 1) / T + 1;
// Span is the range over which we can shift the template around the input image
int span_x = W - wf;
int span_y = H - hf;
// Compute number of contiguous (in memory) pixels to check when sliding feature over
// image. This allows template to wrap around left/right border incorrectly, so any
// wrapped template matches must be filtered out!
int template_positions = span_y * W + span_x + 1; // why add 1?
//int template_positions = (span_y - 1) * W + span_x; // More correct?
/// @todo In old code, dst is buffer of size m_U. Could make it something like
/// (span_x)x(span_y) instead?
dst = Mat::zeros(H, W, CV_8U);
uchar *dst_ptr = dst.ptr<uchar>();
// Compute the similarity measure for this template by accumulating the contribution of
// each feature
for (int i = 0; i < (int)templ.features.size(); ++i)
{
// Add the linear memory at the appropriate offset computed from the location of
// the feature in the template
Feature f = templ.features[i];
// Discard feature if out of bounds
/// @todo Shouldn't actually see x or y < 0 here?
if (f.x < 0 || f.x >= size.width || f.y < 0 || f.y >= size.height)
continue;
const uchar *lm_ptr = accessLinearMemory(linear_memories, f, T, W);
// Now we do an aligned/unaligned add of dst_ptr and lm_ptr with template_positions elements
int j = 0;
for(; j <= template_positions -mipp::N<uint8_t>(); j+=mipp::N<uint8_t>()){
mipp::Reg<uint8_t> src_v((uint8_t*)lm_ptr + j);
mipp::Reg<uint8_t> dst_v((uint8_t*)dst_ptr + j);
mipp::Reg<uint8_t> res_v = src_v + dst_v;
res_v.store((uint8_t*)dst_ptr + j);
}
for(; j<template_positions; j++)
dst_ptr[j] += lm_ptr[j];
}
}
static void similarityLocal_64(const std::vector<Mat> &linear_memories, const Template &templ,
Mat &dst, Size size, int T, Point center)
{
// Similar to whole-image similarity() above. This version takes a position 'center'
// and computes the energy in the 16x16 patch centered on it.
CV_Assert(templ.features.size() < 64);
// Compute the similarity map in a 16x16 patch around center
int W = size.width / T;
dst = Mat::zeros(16, 16, CV_8U);
// Offset each feature point by the requested center. Further adjust to (-8,-8) from the
// center to get the top-left corner of the 16x16 patch.
// NOTE: We make the offsets multiples of T to agree with results of the original code.
int offset_x = (center.x / T - 8) * T;
int offset_y = (center.y / T - 8) * T;
for (int i = 0; i < (int)templ.features.size(); ++i)
{
Feature f = templ.features[i];
f.x += offset_x;
f.y += offset_y;
// Discard feature if out of bounds, possibly due to applying the offset
if (f.x < 0 || f.y < 0 || f.x >= size.width || f.y >= size.height)
continue;
const uchar *lm_ptr = accessLinearMemory(linear_memories, f, T, W);
{
uchar *dst_ptr = dst.ptr<uchar>();
if(mipp::N<uint8_t>() > 16){ // 256 or 512 bits SIMD
for (int row = 0; row < 16; row += mipp::N<uint8_t>()/16){
mipp::Reg<uint8_t> dst_v((uint8_t*)dst_ptr);
// load lm_ptr, 16 bytes once
uint8_t local_v[mipp::N<uint8_t>()];
for(int slice=0; slice<mipp::N<uint8_t>()/16; slice++){
std::copy_n(lm_ptr, 16, &local_v[16*slice]);
lm_ptr += W;
}
mipp::Reg<uint8_t> src_v(local_v);
mipp::Reg<uint8_t> res_v = src_v + dst_v;
res_v.store((uint8_t*)dst_ptr);
dst_ptr += mipp::N<uint8_t>();