forked from Fanziapril/mvfnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
95 lines (78 loc) · 3.57 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
import torch.nn as nn
from torch.nn import functional as F
from collections import OrderedDict
import torchvision.models as tvmodel
def reset_params(net):
for m in net.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal(m.weight, 0.0, 0.02)
if m.bias is not None:
nn.init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal(m.weight, 0.0, 0.0001)
if m.bias is not None:
nn.init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant(m.weight, 1)
nn.init.normal(m.weight, 1.0, 0.02)
nn.init.constant(m.bias, 0)
class VggEncoder(nn.Module):
def __init__(self):
super(VggEncoder, self).__init__()
self.featChannel = 512
self.layer1 = tvmodel.vgg16_bn(pretrained=True).features
self.layer1 = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(3, 64, (3, 3), (1, 1), (1, 1))),
('bn1', nn.BatchNorm2d(64)),
('relu1', nn.ReLU(True)),
('pool1', nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True)),
('conv2', nn.Conv2d(64, 128, (3, 3), (1, 1), (1, 1))),
('bn2', nn.BatchNorm2d(128)),
('relu2', nn.ReLU(True)),
('pool2', nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True)),
('conv3', nn.Conv2d(128, 256, (3, 3), (1, 1), (1, 1))),
('bn3', nn.BatchNorm2d(256)),
('relu3', nn.ReLU(True)),
('conv4', nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1))),
('bn4', nn.BatchNorm2d(256)),
('relu4', nn.ReLU(True)),
('pool3', nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True)),
('conv5', nn.Conv2d(256, 512, (3, 3), (1, 1), 1)),
('bn5', nn.BatchNorm2d(512)),
('relu5', nn.ReLU(True)),
('pool4', nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True)),
('conv6', nn.Conv2d(512, 512, (3, 3), stride=1, padding=1)),
('bn6', nn.BatchNorm2d(512)),
('relu6', nn.ReLU(True)),
('conv7', nn.Conv2d(512, 512, (3, 3), (1, 1), 1)),
('bn7', nn.BatchNorm2d(512)),
('relu7', nn.ReLU(True)),
('pool5', nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True)),
]))
self.fc_3dmm = nn.Sequential(OrderedDict([
('fc1', nn.Linear(self.featChannel*3, 256*3)),
('relu1', nn.ReLU(True)),
('fc2', nn.Linear(256*3, 228))]))
self.fc_pose = nn.Sequential(OrderedDict([
('fc3', nn.Linear(512, 256)),
('relu2', nn.ReLU(True)),
('fc4', nn.Linear(256, 7))]))
reset_params(self.fc_3dmm)
reset_params(self.fc_pose)
def forward(self, x):
imga = x[:, 0:3, :, :]
feata = self.layer1(imga)
feata = F.avg_pool2d(feata, feata.size()[2:]).view(feata.size(0), feata.size(1))
posea = self.fc_pose(feata)
imgb = x[:, 3:6, :, :]
featb = self.layer1(imgb)
featb = F.avg_pool2d(featb, featb.size()[2:]).view(featb.size(0), featb.size(1))
poseb = self.fc_pose(featb)
imgc = x[:, 6:9, :, :]
featc = self.layer1(imgc)
featc = F.avg_pool2d(featc, featc.size()[2:]).view(featc.size(0), featc.size(1))
posec = self.fc_pose(featc)
para = self.fc_3dmm(torch.cat([feata, featb, featc], dim=1))
out = torch.cat([para, posea, poseb, posec], dim=1)
return out