-
Notifications
You must be signed in to change notification settings - Fork 123
/
opencv.go
765 lines (658 loc) · 23 KB
/
opencv.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
package lilliput
// #include "opencv.hpp"
// #include "avif.hpp"
import "C"
import (
"bytes"
"encoding/binary"
"errors"
"image"
"io"
"time"
"unsafe"
)
// DisposeMethod describes how the previous frame should be disposed before rendering the next frame.
type DisposeMethod int
const (
// NoDispose indicates the previous frame should remain as-is
NoDispose DisposeMethod = iota
// DisposeToBackgroundColor indicates the previous frame area should be cleared to background color
DisposeToBackgroundColor
)
// BlendMethod describes how the previous frame should be blended with the next frame.
type BlendMethod int
const (
// UseAlphaBlending indicates alpha blending should be used when compositing frames
UseAlphaBlending BlendMethod = iota
// NoBlend indicates frames should be copied directly without blending
NoBlend
)
// ImageOrientation describes how the decoded image is oriented according to its metadata.
type ImageOrientation int
const (
// Standard image encoding constants
JpegQuality = int(C.CV_IMWRITE_JPEG_QUALITY) // Quality parameter for JPEG encoding (0-100)
PngCompression = int(C.CV_IMWRITE_PNG_COMPRESSION) // Compression level for PNG encoding (0-9)
WebpQuality = int(C.CV_IMWRITE_WEBP_QUALITY) // Quality parameter for WebP encoding (0-100)
JpegProgressive = int(C.CV_IMWRITE_JPEG_PROGRESSIVE) // Enable progressive JPEG encoding
AvifQuality = int(C.AVIF_QUALITY) // Quality parameter for AVIF encoding (0-100)
AvifSpeed = int(C.AVIF_SPEED) // Speed parameter for AVIF encoding (0-10)
// Image orientation constants
OrientationTopLeft = ImageOrientation(C.CV_IMAGE_ORIENTATION_TL)
OrientationTopRight = ImageOrientation(C.CV_IMAGE_ORIENTATION_TR)
OrientationBottomRight = ImageOrientation(C.CV_IMAGE_ORIENTATION_BR)
OrientationBottomLeft = ImageOrientation(C.CV_IMAGE_ORIENTATION_BL)
OrientationLeftTop = ImageOrientation(C.CV_IMAGE_ORIENTATION_LT)
OrientationRightTop = ImageOrientation(C.CV_IMAGE_ORIENTATION_RT)
OrientationRightBottom = ImageOrientation(C.CV_IMAGE_ORIENTATION_RB)
OrientationLeftBottom = ImageOrientation(C.CV_IMAGE_ORIENTATION_LB)
// PNG chunk field lengths
pngChunkSizeFieldLen = 4
pngChunkTypeFieldLen = 4
pngChunkAllFieldsLen = 12
// JPEG segment type markers
jpegEOISegmentType byte = 0xD9 // End of Image marker
jpegSOSSegmentType byte = 0xDA // Start of Scan marker
)
// PNG chunk type identifiers
var (
pngActlChunkType = []byte{byte('a'), byte('c'), byte('T'), byte('L')} // Animation Control Chunk
pngFctlChunkType = []byte{byte('f'), byte('c'), byte('T'), byte('L')} // Frame Control Chunk
pngFdatChunkType = []byte{byte('f'), byte('d'), byte('A'), byte('T')} // Frame Data Chunk
pngIendChunkType = []byte{byte('I'), byte('E'), byte('N'), byte('D')} // Image End Chunk
// Map of JPEG segment types that don't have a size field
jpegUnsizedSegmentTypes = map[byte]bool{
0xD0: true, // RST0 marker
0xD1: true, // RST1 marker
0xD2: true, // RST2 marker
0xD3: true, // RST3 marker
0xD4: true, // RST4 marker
0xD5: true, // RST5 marker
0xD6: true, // RST6 marker
0xD7: true, // RST7 marker
0xD8: true, // SOI marker
jpegEOISegmentType: true, // EOI marker
}
)
// PixelType describes the base pixel type of the image.
type PixelType int
// ImageHeader contains basic decoded image metadata.
type ImageHeader struct {
width int // Width of the image in pixels
height int // Height of the image in pixels
pixelType PixelType // Type of pixels in the image
orientation ImageOrientation // Orientation from image metadata
numFrames int // Number of frames (1 for static images)
contentLength int // Length of actual image content
}
// Framebuffer contains an array of raw, decoded pixel data.
type Framebuffer struct {
buf []byte // Raw pixel data
mat C.opencv_mat // OpenCV matrix containing the pixel data
width int // Width of the frame in pixels
height int // Height of the frame in pixels
pixelType PixelType // Type of pixels in the frame
duration time.Duration // Duration to display this frame
xOffset int // X offset for drawing this frame
yOffset int // Y offset for drawing this frame
dispose DisposeMethod // How to dispose previous frame
blend BlendMethod // How to blend with previous frame
}
// openCVDecoder implements the Decoder interface for images supported by OpenCV.
type openCVDecoder struct {
decoder C.opencv_decoder // Native OpenCV decoder
mat C.opencv_mat // OpenCV matrix containing the image data
buf []byte // Original encoded image data
hasReadHeader bool // Whether header has been read
hasDecoded bool // Whether image has been decoded
}
// openCVEncoder implements the Encoder interface for images supported by OpenCV.
type openCVEncoder struct {
encoder C.opencv_encoder // Native OpenCV encoder
dst C.opencv_mat // Destination OpenCV matrix
dstBuf []byte // Destination buffer for encoded data
}
// Depth returns the number of bits in the PixelType.
func (p PixelType) Depth() int {
return int(C.opencv_type_depth(C.int(p)))
}
// Channels returns the number of channels in the PixelType.
func (p PixelType) Channels() int {
return int(C.opencv_type_channels(C.int(p)))
}
// Width returns the width of the image in number of pixels.
func (h *ImageHeader) Width() int {
return h.width
}
// Height returns the height of the image in number of pixels.
func (h *ImageHeader) Height() int {
return h.height
}
// PixelType returns a PixelType describing the image's pixels.
func (h *ImageHeader) PixelType() PixelType {
return h.pixelType
}
// Orientation returns the metadata-based image orientation.
func (h *ImageHeader) Orientation() ImageOrientation {
return h.orientation
}
// IsAnimated returns true if the image contains multiple frames.
func (h *ImageHeader) IsAnimated() bool {
return h.numFrames > 1
}
// HasAlpha returns true if the image has an alpha channel.
func (h *ImageHeader) HasAlpha() bool {
return h.pixelType.Channels() == 4
}
// ContentLength returns the length of the necessary image data.
// Data past this point can be safely truncated using data[:h.ContentLength()].
// This helps handle padding bytes and potential unwanted trailing data.
// This could be applicable to images with unwanted data at the end (e.g. "acropalypse" bug).
func (h *ImageHeader) ContentLength() int {
return h.contentLength
}
// NewFramebuffer creates a backing store for a pixel frame buffer with the specified dimensions.
func NewFramebuffer(width, height int) *Framebuffer {
return &Framebuffer{
buf: make([]byte, width*height*4),
mat: nil,
}
}
// Close releases the resources associated with Framebuffer.
func (f *Framebuffer) Close() {
if f.mat != nil {
C.opencv_mat_release(f.mat)
f.mat = nil
}
}
// Clear resets all pixel data in Framebuffer for the active frame and resets the mat if it exists.
func (f *Framebuffer) Clear() {
C.memset(unsafe.Pointer(&f.buf[0]), 0, C.size_t(len(f.buf)))
if f.mat != nil {
C.opencv_mat_reset(f.mat)
}
}
// Create3Channel initializes the framebuffer for 3-channel (RGB) image data.
func (f *Framebuffer) Create3Channel(width, height int) error {
if err := f.resizeMat(width, height, C.CV_8UC3); err != nil {
return err
}
f.Clear()
return nil
}
// Create4Channel initializes the framebuffer for 4-channel (RGBA) image data.
func (f *Framebuffer) Create4Channel(width, height int) error {
if err := f.resizeMat(width, height, C.CV_8UC4); err != nil {
return err
}
f.Clear()
return nil
}
// resizeMat resizes the OpenCV matrix to the specified dimensions and pixel type.
// Returns ErrBufTooSmall if the matrix cannot be created at the specified size.
func (f *Framebuffer) resizeMat(width, height int, pixelType PixelType) error {
if f.mat != nil {
C.opencv_mat_release(f.mat)
f.mat = nil
}
if pixelType.Depth() > 8 {
pixelType = PixelType(C.opencv_type_convert_depth(C.int(pixelType), C.CV_8U))
}
newMat := C.opencv_mat_create_from_data(C.int(width), C.int(height), C.int(pixelType), unsafe.Pointer(&f.buf[0]), C.size_t(len(f.buf)))
if newMat == nil {
return ErrBufTooSmall
}
f.mat = newMat
f.width = width
f.height = height
f.pixelType = pixelType
return nil
}
// OrientationTransform rotates and/or mirrors the Framebuffer according to the given orientation.
// Passing the orientation from ImageHeader will normalize the orientation.
func (f *Framebuffer) OrientationTransform(orientation ImageOrientation) {
if f.mat == nil {
return
}
C.opencv_mat_orientation_transform(C.CVImageOrientation(orientation), f.mat)
f.width = int(C.opencv_mat_get_width(f.mat))
f.height = int(C.opencv_mat_get_height(f.mat))
}
// ResizeTo performs a resizing transform on the Framebuffer and puts the result
// in the provided destination Framebuffer. This function does not preserve aspect
// ratio if the given dimensions differ in ratio from the source. Returns an error
// if the destination is not large enough to hold the given dimensions.
func (f *Framebuffer) ResizeTo(width, height int, dst *Framebuffer) error {
if width < 1 {
width = 1
}
if height < 1 {
height = 1
}
err := dst.resizeMat(width, height, f.pixelType)
if err != nil {
return err
}
C.opencv_mat_resize(f.mat, dst.mat, C.int(width), C.int(height), C.CV_INTER_AREA)
return nil
}
// ClearToTransparent clears a rectangular region of the framebuffer to transparent.
func (f *Framebuffer) ClearToTransparent(rect image.Rectangle) error {
if f.mat == nil {
return errors.New("framebuffer matrix is nil")
}
result := C.opencv_mat_clear_to_transparent(f.mat, C.int(rect.Min.X), C.int(rect.Min.Y), C.int(rect.Dx()), C.int(rect.Dy()))
return handleOpenCVError(result)
}
// Fit performs a resizing and cropping transform on the Framebuffer and puts the result
// in the provided destination Framebuffer. This function does preserve aspect ratio
// but will crop columns or rows from the edges of the image as necessary in order to
// keep from stretching the image content. Returns an error if the destination is
// not large enough to hold the given dimensions.
func (f *Framebuffer) Fit(width, height int, dst *Framebuffer) error {
if f.mat == nil {
return ErrFrameBufNoPixels
}
aspectIn := float64(f.width) / float64(f.height)
aspectOut := float64(width) / float64(height)
var widthPostCrop, heightPostCrop int
if aspectIn > aspectOut {
// input is wider than output, so we'll need to narrow
// we preserve input height and reduce width
widthPostCrop = int((aspectOut * float64(f.height)) + 0.5)
heightPostCrop = f.height
} else {
// input is taller than output, so we'll need to shrink
heightPostCrop = int((float64(f.width) / aspectOut) + 0.5)
widthPostCrop = f.width
}
if widthPostCrop < 1 {
widthPostCrop = 1
}
if heightPostCrop < 1 {
heightPostCrop = 1
}
var left, top int
left = int(float64(f.width-widthPostCrop) * 0.5)
if left < 0 {
left = 0
}
top = int(float64(f.height-heightPostCrop) * 0.5)
if top < 0 {
top = 0
}
newMat := C.opencv_mat_crop(f.mat, C.int(left), C.int(top), C.int(widthPostCrop), C.int(heightPostCrop))
defer C.opencv_mat_release(newMat)
err := dst.resizeMat(width, height, f.pixelType)
if err != nil {
return err
}
C.opencv_mat_resize(newMat, dst.mat, C.int(width), C.int(height), C.CV_INTER_AREA)
return nil
}
// Width returns the width of the contained pixel data in number of pixels. This may
// differ from the capacity of the framebuffer.
func (f *Framebuffer) Width() int {
return f.width
}
// Height returns the height of the contained pixel data in number of pixels. This may
// differ from the capacity of the framebuffer.
func (f *Framebuffer) Height() int {
return f.height
}
// PixelType returns the PixelType information of the contained pixel data, if any.
func (f *Framebuffer) PixelType() PixelType {
return f.pixelType
}
// Duration returns the length of time this frame plays out in an animated image
func (f *Framebuffer) Duration() time.Duration {
return f.duration
}
// handleOpenCVError converts an OpenCV error code to an error
func handleOpenCVError(result C.int) error {
switch result {
case C.OPENCV_SUCCESS:
return nil
case C.OPENCV_ERROR_INVALID_CHANNEL_COUNT:
return errors.New("error copying opencv data: source image must have 3 or 4 channels")
case C.OPENCV_ERROR_OUT_OF_BOUNDS:
return errors.New("error copying opencv data: source image with offsets exceeds the bounds of the destination framebuffer")
case C.OPENCV_ERROR_NULL_MATRIX:
return errors.New("error copying opencv data: source or destination matrix is null")
case C.OPENCV_ERROR_ALPHA_BLENDING_FAILED:
return errors.New("error copying opencv data: alpha blending failed")
case C.OPENCV_ERROR_FINAL_CONVERSION_FAILED:
return errors.New("error copying opencv data: final conversion failed")
case C.OPENCV_ERROR_CONVERSION_FAILED:
return errors.New("error copying opencv data: conversion failed")
case C.OPENCV_ERROR_RESIZE_FAILED:
return errors.New("error copying opencv data: resize failed")
case C.OPENCV_ERROR_COPY_FAILED:
return errors.New("error copying opencv data: copy failed")
case C.OPENCV_ERROR_INVALID_DIMENSIONS:
return errors.New("error copying opencv data: invalid dimensions")
case C.OPENCV_ERROR_UNKNOWN:
return errors.New("unknown error copying opencv data")
default:
return errors.New("unknown error occurred during alpha blending")
}
}
// CopyToOffsetWithAlphaBlending copies the source framebuffer to a specified rectangle within the destination framebuffer.
// This function performs alpha blending.
func (f *Framebuffer) CopyToOffsetWithAlphaBlending(src *Framebuffer, rect image.Rectangle) error {
result := C.opencv_copy_to_region_with_alpha(src.mat, f.mat, C.int(rect.Min.X), C.int(rect.Min.Y), C.int(rect.Dx()), C.int(rect.Dy()))
return handleOpenCVError(result)
}
// CopyToOffsetNoBlend copies the source framebuffer to a specified rectangle within the destination framebuffer.
// This function does not perform any blending.
func (f *Framebuffer) CopyToOffsetNoBlend(src *Framebuffer, rect image.Rectangle) error {
result := C.opencv_copy_to_region(src.mat, f.mat, C.int(rect.Min.X), C.int(rect.Min.Y), C.int(rect.Dx()), C.int(rect.Dy()))
return handleOpenCVError(result)
}
func newOpenCVDecoder(buf []byte) (*openCVDecoder, error) {
mat := C.opencv_mat_create_from_data(C.int(len(buf)), 1, C.CV_8U, unsafe.Pointer(&buf[0]), C.size_t(len(buf)))
// this next check is sort of silly since this array is 1-dimensional
// but if the create ever changes and we goof up, could catch a
// buffer overwrite
if mat == nil {
return nil, ErrBufTooSmall
}
decoder := C.opencv_decoder_create(mat)
if decoder == nil {
C.opencv_mat_release(mat)
return nil, ErrInvalidImage
}
return &openCVDecoder{
mat: mat,
decoder: decoder,
buf: buf,
}, nil
}
// chunk format https://www.w3.org/TR/PNG-Structure.html
// TLDR: 4 bytes length, 4 bytes type, variable data, 4 bytes CRC
// length is only the "data" field; does not include itself, the type or the CRC
type pngChunkIter struct {
png []byte
iterOffset int
}
func makePngChunkIter(png []byte) (*pngChunkIter, error) {
if !bytes.HasPrefix(png, pngMagic) {
return nil, errors.New("Image is not PNG")
}
return &pngChunkIter{
png: png, iterOffset: 0,
}, nil
}
func (it *pngChunkIter) hasSpaceForChunk() bool {
return it.iterOffset+pngChunkAllFieldsLen <= len(it.png)
}
// byte offset of the next chunk. might be past the end of the data
// for the last chunk, or if the chunk is malformed
func (it *pngChunkIter) nextChunkOffset() int {
chunkDataSize := (int)(binary.BigEndian.Uint32(it.png[it.iterOffset:]))
return it.iterOffset + chunkDataSize + pngChunkAllFieldsLen
}
func (it *pngChunkIter) next() bool {
if it.iterOffset < len(pngMagic) {
// move to the first chunk by skipping png magic prefix
it.iterOffset = len(pngMagic)
return it.hasSpaceForChunk()
}
if !it.hasSpaceForChunk() {
return false
}
it.iterOffset = it.nextChunkOffset()
return it.hasSpaceForChunk()
}
func (it *pngChunkIter) chunkType() []byte {
return it.png[it.iterOffset+4 : it.iterOffset+8]
}
func detectContentLengthPNG(png []byte) int {
chunkIter, err := makePngChunkIter(png)
if err != nil {
// This is not a png, take all the data
return len(png)
}
for chunkIter.next() {
chunkType := chunkIter.chunkType()
if bytes.Equal(chunkType, pngIendChunkType) {
eofOffset := chunkIter.nextChunkOffset()
if eofOffset > len(png) {
eofOffset = len(png)
}
return eofOffset
}
}
// Didn't find IEND. File is malformed but let's continue anyway
return len(png)
}
func detectContentLengthJPEG(jpeg []byte) int {
// check if this is maybe jpeg
jpegPrefix := []byte{0xFF, 0xD8, 0xFF}
if !bytes.HasPrefix(jpeg, jpegPrefix) {
// Not jpeg if it doesn't begin with SOI
return len(jpeg)
}
// Iterate through jpeg segments
idx := 0
for {
if idx+1 >= len(jpeg) {
break
}
if jpeg[idx] != 0xFF {
// not valid jpeg
break
}
// Segments are at least 2 bytes big
nextSegmentStart := idx + 2
// find current segment type
segmentType := jpeg[idx+1]
if segmentType == jpegEOISegmentType {
// EOI means the end of image content
return nextSegmentStart
} else if segmentType == 0xFF {
// Some handling for padding
idx++
continue
}
if _, isUnsized := jpegUnsizedSegmentTypes[segmentType]; isUnsized {
idx = nextSegmentStart
continue
}
if idx+3 >= len(jpeg) {
// not enough data to continue
break
}
// 2 bytes size includes itself
nextSegmentStart += (int)(binary.BigEndian.Uint16(jpeg[idx+2:]))
if segmentType == jpegSOSSegmentType {
// start of scan means that ECS data follows
// ECS data does not start with 0xFF marker
// scan through ECS to find next segment which starts with 0xFF
for ; nextSegmentStart < len(jpeg); nextSegmentStart++ {
if jpeg[nextSegmentStart] != 0xFF {
continue
}
if nextSegmentStart+1 >= len(jpeg) {
nextSegmentStart = len(jpeg)
break
}
peek := jpeg[nextSegmentStart+1]
if peek == 0xFF {
// there can be padding bytes which are repeated 0xFF
continue
}
// 0 means this is a raw 0xFF in the ECS data
// RST segment types are also a continuation of ECS data
if peek != 0 && (peek < 0xD0 || peek > 0xD7) {
// Reached the end of ECS!
break
}
}
}
idx = nextSegmentStart
}
// if we didn't find EOI, fallback to the full length
return len(jpeg)
}
func detectContentLength(img []byte) int {
// both of these short circuit if the correct prefix isn't detected
// so we can just call both with little cost for simpler code
jpegLength := detectContentLengthJPEG(img)
pngLength := detectContentLengthPNG(img)
if jpegLength < pngLength {
return jpegLength
}
return pngLength
}
// detectAPNG detects if a blob contains a PNG with animated segments
func detectAPNG(maybeAPNG []byte) bool {
chunkIter, err := makePngChunkIter(maybeAPNG)
if err != nil {
// This is not a png at all :)
return false
}
for chunkIter.next() {
chunkType := chunkIter.chunkType()
if bytes.Equal(chunkType, pngActlChunkType) || bytes.Equal(chunkType, pngFctlChunkType) || bytes.Equal(chunkType, pngFdatChunkType) {
return true
}
}
return false
}
func (d *openCVDecoder) Header() (*ImageHeader, error) {
if !d.hasReadHeader {
if !C.opencv_decoder_read_header(d.decoder) {
return nil, ErrInvalidImage
}
}
d.hasReadHeader = true
numFrames := 1
if detectAPNG(d.buf) {
numFrames = 2
}
return &ImageHeader{
width: int(C.opencv_decoder_get_width(d.decoder)),
height: int(C.opencv_decoder_get_height(d.decoder)),
pixelType: PixelType(C.opencv_decoder_get_pixel_type(d.decoder)),
orientation: ImageOrientation(C.opencv_decoder_get_orientation(d.decoder)),
numFrames: numFrames,
contentLength: detectContentLength(d.buf),
}, nil
}
func (d *openCVDecoder) Close() {
C.opencv_decoder_release(d.decoder)
C.opencv_mat_release(d.mat)
d.buf = nil
}
func (d *openCVDecoder) Description() string {
return C.GoString(C.opencv_decoder_get_description(d.decoder))
}
func (d *openCVDecoder) IsStreamable() bool {
return true
}
func (d *openCVDecoder) BackgroundColor() uint32 {
return 0xFFFFFFFF
}
func (d *openCVDecoder) LoopCount() int {
return 0 // loop indefinitely
}
func (d *openCVDecoder) HasSubtitles() bool {
return false
}
func (d *openCVDecoder) ICC() []byte {
switch d.Description() {
case "JPEG":
return d.iccJPEG()
case "PNG":
return d.iccPNG()
}
return []byte{}
}
func (d *openCVDecoder) iccJPEG() []byte {
iccDst := make([]byte, 8192)
iccLength := C.opencv_decoder_get_jpeg_icc(unsafe.Pointer(&d.buf[0]), C.size_t(len(d.buf)), unsafe.Pointer(&iccDst[0]), C.size_t(cap(iccDst)))
return iccDst[:iccLength]
}
func (d *openCVDecoder) iccPNG() []byte {
iccDst := make([]byte, 8192)
iccLength := C.opencv_decoder_get_png_icc(unsafe.Pointer(&d.buf[0]), C.size_t(len(d.buf)), unsafe.Pointer(&iccDst[0]), C.size_t(cap(iccDst)))
return iccDst[:iccLength]
}
func (d *openCVDecoder) Duration() time.Duration {
return time.Duration(0)
}
func (d *openCVDecoder) DecodeTo(f *Framebuffer) error {
if d.hasDecoded {
return io.EOF
}
h, err := d.Header()
if err != nil {
return err
}
err = f.resizeMat(h.Width(), h.Height(), h.PixelType())
if err != nil {
return err
}
ret := C.opencv_decoder_read_data(d.decoder, f.mat)
if !ret {
return ErrDecodingFailed
}
d.hasDecoded = true
f.blend = NoBlend
f.dispose = DisposeToBackgroundColor
f.xOffset = 0
f.yOffset = 0
f.duration = time.Duration(0)
return nil
}
func (d *openCVDecoder) SkipFrame() error {
return ErrSkipNotSupported
}
func newOpenCVEncoder(ext string, decodedBy Decoder, dstBuf []byte) (*openCVEncoder, error) {
dstBuf = dstBuf[:1]
dst := C.opencv_mat_create_empty_from_data(C.int(cap(dstBuf)), unsafe.Pointer(&dstBuf[0]))
if dst == nil {
return nil, ErrBufTooSmall
}
c_ext := C.CString(ext)
defer C.free(unsafe.Pointer(c_ext))
enc := C.opencv_encoder_create(c_ext, dst)
if enc == nil {
return nil, ErrInvalidImage
}
return &openCVEncoder{
encoder: enc,
dst: dst,
dstBuf: dstBuf,
}, nil
}
func (e *openCVEncoder) Encode(f *Framebuffer, opt map[int]int) ([]byte, error) {
if f == nil {
return nil, io.EOF
}
var optList []C.int
var firstOpt *C.int
for k, v := range opt {
optList = append(optList, C.int(k))
optList = append(optList, C.int(v))
}
if len(optList) > 0 {
firstOpt = (*C.int)(unsafe.Pointer(&optList[0]))
}
if !C.opencv_encoder_write(e.encoder, f.mat, firstOpt, C.size_t(len(optList))) {
return nil, ErrInvalidImage
}
ptrCheck := C.opencv_mat_get_data(e.dst)
if ptrCheck != unsafe.Pointer(&e.dstBuf[0]) {
// mat pointer got reallocated - the passed buf was too small to hold the image
// XXX we should free? the mat here, probably want to recreate
return nil, ErrBufTooSmall
}
length := int(C.opencv_mat_get_height(e.dst))
return e.dstBuf[:length], nil
}
func (e *openCVEncoder) Close() {
C.opencv_encoder_release(e.encoder)
C.opencv_mat_release(e.dst)
}