-
Notifications
You must be signed in to change notification settings - Fork 0
/
clustering.rmd
397 lines (319 loc) · 11.5 KB
/
clustering.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
---
title: "Labo de la Saint-Valentin"
author: "Charles-Hubert van Eyll, Christopher Blier-Wong & Chaymae Yousfi"
date: "16 février 2018"
output:
ioslides_presentation: default
beamer_presentation: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## Paquetages et données
Les données proviennent d'une analyse par fivethirtyeight. La source est
https://github.com/fivethirtyeight/data/blob/master/love-actually/love_actually_adjacencies.csv
```{r}
load("LovaActually.RData")
library(NbClust)
library(clValid)
library(plotly)
```
```{r, echo = FALSE}
dat<- data.frame(t=seq(0, 2*pi, by=0.1) )
xhrt <- function(t) 16*sin(t)^3
yhrt <- function(t) 13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t)
dat$y=yhrt(dat$t)
dat$x=xhrt(dat$t)
with(dat, plot(x,y, type="l"))
with(dat, polygon(x,y, col="hotpink"))
points(c(10,-10, -15, 15), c(-10, -10, 10, 10), pch=169, font=5)
```
## Organisation de la matrice
Il faut d'abord modifier l'ordre des colonnes dans la matrice et produire les matrices de distance. On utilise la
matrice de distance euclidienne et la matrice de distance $\chi^2$.
Soit $\chi^2$, la matrice de chi carré. Alors, chaque élément de la matrice $\chi^2$ est calculé selon la formule suivante :
$$ \chi^2_{i, j} = \frac{Freq_{i, j}}{\sqrt{Freq_i \times Freq_j}}.$$
On produit une matrice de dissimilarité en calculant 1 - $\chi^2$.
```{r, echo = FALSE}
loveCorrigee = as.matrix(love[c(1,2,7:14,3:6),])
rownames(loveCorrigee) = colnames(loveCorrigee)
loveCorrigee[upper.tri(loveCorrigee)] <-
t(loveCorrigee)[upper.tri(loveCorrigee)]
scenes <- diag(loveCorrigee)
dist.chi2 <- as.dist(1 - loveCorrigee / sqrt(scenes %*% t(scenes)))
dist.eucl <- dist(loveCorrigee)
```
## Distance $\chi^2$
```{r, echo = FALSE}
as.matrix(loveCorrigee)[1:4, 1:4]
as.matrix(dist.chi2)[1:4, 1:4]
```
## Classification hiérarchique euclidienne
```{r, echo = FALSE}
par(mar = c(0, 2, 2, 2) + 0.1)
hc.eucl <- hclust(dist.eucl, "ave")
plot(hc.eucl, hang = -1, xlab = NA, sub = NA)
```
## Classification hiérarchique $\chi^2$
```{r, echo = FALSE}
par(mar = c(0, 2, 2, 2) + 0.1)
hc.chi2 <- hclust(as.dist(dist.chi2), "ave")
plot(hc.chi2, hang = -1, xlab = NA, sub = NA)
```
## Comparaison des groupes
Distance euclidienne, 3 et 4 clusters
```{r, echo = FALSE}
par(mfrow = c(1, 2))
for (i in 3:4) {
plot(hc.eucl, cex = 0.6, xlab = NA, sub = NA)
rect.hclust(hc.eucl, k = i)
}
```
## Comparaison des groupes
Distance euclidienne, 5 et 6 clusters
```{r, echo = FALSE}
par(mfrow = c(1, 2))
for (i in c(5, 6)) {
plot(hc.eucl, cex = 0.6, xlab = NA, sub = NA)
rect.hclust(hc.eucl, k = i)
}
```
## Comparaison des groupes
Distance $\chi^2$, 3 et 4 clusters
```{r, echo = FALSE}
par(mfrow = c(1, 2))
for (i in c(3, 4)) {
plot(hc.chi2, cex = 0.6, xlab = NA, sub = NA)
rect.hclust(hc.chi2, k = i)
}
```
## Comparaison des groupes
Distance $\chi^2$, 5 et 6 clusters
```{r, echo = FALSE}
par(mfrow = c(1, 2))
for (i in c(5, 6)) {
plot(hc.chi2, cex = 0.6, xlab = NA, sub = NA)
rect.hclust(hc.chi2, k = i)
}
```
## Comparaison avec 3 clusters
```{r, echo = FALSE}
par(mfrow = c(1, 2))
plot(hc.eucl, cex = 0.6, xlab = NA, sub = NA, main = "Distance euclidienne")
rect.hclust(hc.eucl, k = 3)
plot(hc.chi2, cex = 0.6, xlab = NA, sub = NA, main = expression(paste("Distance ", chi^2)))
rect.hclust(hc.chi2, k = 3)
```
## Comparaison avec 4 clusters
```{r, echo = FALSE}
par(mfrow = c(1, 2))
plot(hc.eucl, cex = 0.6, xlab = NA, sub = NA, main = "Distance euclidienne")
rect.hclust(hc.eucl, k = 4)
plot(hc.chi2, cex = 0.6, xlab = NA, sub = NA, main = expression(paste("Distance ", chi^2)))
rect.hclust(hc.chi2, k = 4)
```
## Comparaison avec 5 clusters
```{r, echo = FALSE}
par(mfrow = c(1, 2))
plot(hc.eucl, cex = 0.6, xlab = NA, sub = NA, main = "Distance euclidienne")
rect.hclust(hc.eucl, k = 5)
plot(hc.chi2, cex = 0.6, xlab = NA, sub = NA, main = expression(paste("Distance ", chi^2)))
rect.hclust(hc.chi2, k = 5)
```
## Comparaison avec 6 clusters
```{r, echo = FALSE}
par(mfrow = c(1, 2))
plot(hc.eucl, cex = 0.6, xlab = NA, sub = NA, main = "Distance euclidienne")
rect.hclust(hc.eucl, k = 6)
plot(hc.chi2, cex = 0.6, xlab = NA, sub = NA, main = expression(paste("Distance ", chi^2)))
rect.hclust(hc.chi2, k = 6)
```
Le bon nombre semble être 5 clusters
## K-moyennes
```{r, echo = FALSE}
loveAsDistance = as.matrix(as.dist(loveCorrigee))
diag(loveAsDistance) = diag(loveCorrigee)
```
On applique le k-moyennes
```{r}
grps = cutree(hc.eucl, k = 3)
result = kmeans(loveAsDistance, centers = 3)
table(result$cluster, grps)
```
Cet aperçu semble nous indiquer que K-means divise mal les observations du jeu de données.
## Comparaison des valeurs de $k$
On applique alors K-moyennes sur des nombres de centres de 1 à 10.
On s'attend à une courbe en éboulis avec un coude visible qui représente notre bon nombre de centres.
```{r, echo = FALSE}
par(mfrow = c(1, 2))
plot(1:10, sapply(1:10, function(k) {kmeans(loveAsDistance, k)$tot.withinss}), type="l", ylab = "EQ inter-cluster", xlab = "Nombre de centres", main = "Distance euclidienne")
plot(1:10, sapply(1:10, function(k) {kmeans(dist.chi2, k)$tot.withinss}), type="l", ylab = "EQ inter-cluster", xlab = "Nombre de centres", main = expression(paste("Distance ", chi^2)))
```
On observe que les graphiques résultants ne sont pas assez décroissants et ne possèdent pas de coude suffisamment apparent. Il ne semble pas y avoir des groupes naturels dans les données.
## NbClust euclidienne
On emploie NbClust pour obtenir le nombre optimal de clusters.
```{r, echo = FALSE}
res<-NbClust(loveAsDistance, min.nc=2, max.nc=8,
method="complete", index="silhouette")
plot(res$All.index)
```
## NbClust $\chi^2$
```{r, echo = FALSE}
res<-NbClust(dist.chi2, min.nc=2, max.nc=8,
method="complete", index="silhouette")
plot(res$All.index)
```
## NbClust valeurs suggérées
```{r, echo = FALSE}
par(mfrow = c(1, 2))
res<-NbClust(loveAsDistance, min.nc=2, max.nc=8, method="complete", index="silhouette")
# plot(res$All.index)
res$Best.nc
res<-NbClust(dist.chi2, min.nc=2, max.nc=8, method="complete", index="silhouette")
# plot(res$All.index)
res$Best.nc
```
La fonction nous indique que le nombre optimal de clusters est le nombre maximal fourni, ce qui semble étrange.
## clValid : euclidienne hierarchique
```{r, echo = FALSE}
stab.eucl = clValid(loveAsDistance, nClust = 2:8, clMethods = c("hierarchical", "kmeans"), validation = c("internal", "stability"))
measures(stab.eucl)[, , 1]
```
## clValid : $\chi^2$ hierarchique
```{r, echo = FALSE}
stab.chi2 = clValid(as.matrix(dist.chi2), nClust = 2:8, clMethods = c("hierarchical", "kmeans"), validation = c("internal", "stability"))
measures(stab.chi2)[, , 1]
```
## clValid : euclidienne $k$-moyennes
```{r, echo = FALSE}
measures(stab.eucl)[, , 2]
```
## clValid : $\chi^2$ $k$-moyennes
```{r, echo = FALSE}
measures(stab.chi2)[, , 2]
```
## clValid : Choix optimal de groupes euclidiens
```{r, echo = FALSE}
optimalScores(stab.eucl)
```
## clValid : Choix optimal de groupes $\chi^2$
```{r, echo = FALSE}
optimalScores(stab.chi2)
```
## Meilleur modèle
On choisit le modèle de classification hiererchique avec 6 clusters et la matrice de distance $\chi^2$.
```{r, echo = FALSE}
plot(hc.chi2, cex = 0.6, xlab = NA, sub = NA, main = expression(paste("Distance ", chi^2)))
rect.hclust(hc.chi2, k = 6, border = 2:8)
```
## Conclusions
- Résultats similaires selon différentes mesures de distance
- Différence, à quel point les personnes seules se séparent du groupe.
- Les couples sont tous regroupés à la fin
- On a eu du plaisir
## Projection des données en 2 dimensions
```{r, echo = FALSE}
grps <- cutree(hc.chi2, k = 6)
out <- prcomp(dist.chi2)
plot(out$x[, 1], out$x[, 2], col = grps, type = "n")
text(out$x[, 1], out$x[, 2], labels = hc.chi2$labels, cex = 0.5, col = grps)
```
## Projection des données en 3 dimensions
```{r, include=FALSE}
p <- plot_ly(x = out$x[, 1], y = out$x[, 2], z = out$x[, 3], color = grps, colors = c('#BF382A', '#0C4B8E')) %>%
add_markers() %>%
layout(scene = list(xaxis = list(title = 'CP1'),
yaxis = list(title = 'CP2'),
zaxis = list(title = 'CP3')))
```
```{r, echo = FALSE}
plot_ly(x = out$x[, 1], y = out$x[, 2], z = out$x[, 3], color = as.factor(grps), colors = "Set1", text = ~paste("Personnage: ", hc.chi2$labels)) %>%
add_markers() %>%
layout(scene = list(xaxis = list(title = 'CP1'),
yaxis = list(title = 'CP2'),
zaxis = list(title = 'CP3')))
```
## Graphique des personnages
```{r, echo = FALSE}
i = 1
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 2
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 3
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 4
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 5
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 6
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 7
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 8
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 9
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 10
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 11
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 12
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 13
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```
## Graphique des personnages
```{r, echo = FALSE}
i = 14
plot(as.matrix(dist.chi2)[i, ], col = grps, main = hc.chi2$labels[i], type = "n")
text(1:14,as.matrix(dist.chi2)[i, ],labels=hc.chi2$labels,cex=0.5, col = grps)
```