-
Notifications
You must be signed in to change notification settings - Fork 0
/
poster_sessions.html
259 lines (251 loc) · 25 KB
/
poster_sessions.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
layout: default
---
<!--<style type="text/css">-->
<!--.schedule_table {-->
<!--margin-bottom: 2em;-->
<!--}-->
<!--.schedule_table th{-->
<!--border-top: 1px solid black;-->
<!--border-bottom: 1px solid black;-->
<!--}-->
<!--.schedule_table td{-->
<!--padding: 0.5em;-->
<!--}-->
<!--.schedule_table td:nth-child(1) {-->
<!--min-width: 80px;-->
<!--white-space: nowrap;-->
<!--}-->
<!--.schedule_table td:nth-child(2) {-->
<!--border-left: 1px solid black;-->
<!--border-bottom: 1px dashed black;-->
<!--}-->
<!--.schedule_table tr:last-child td{-->
<!--border-bottom: 1px solid black;-->
<!--}-->
<!--</style>-->
<!--<div class="contents">-->
<h1>AISTATS 2018 Poster Sessions</h1>
<h2>Accepted papers</h2>
<p>All accepted papers are available <a href="accepted.html">here</a>.</p>
<h2>Poster Format</h2>
<p>The poster board is 0.90m (wide) x 2.10m (high). We recommend <b>A0 portrait</b> as
the poster size. <b>Please make sure to bring the posters printed to Lanzarote as there are no onsite printing facilities available.</b></p>
<h2><span id=Poster_Session1>Poster Session 1 (April 9)</span></h2><p>Poster 1: <b>Submodularity on Hypergraphs: From Sets to Sequences</b><br> Marko
Mitrovic</p><p>Poster 2: <b>Regional Multi-Armed Bandits</b><br> Cong
Shen</p><p>Poster 3: <b>On the challenges of learning with inference networks on sparse high-dimensional data</b><br> Rahul
Krishnan</p><p>Poster 4: <b>Integral Transforms from Finite Data: An Application of Gaussian Process Regression to Fourier Analysis</b><br> Luca
Ambrogioni</p><p>Poster 5: <b>Combinatorial Preconditioners for Proximal Algorithms on Graphs</b><br> Thomas
Möllenhoff</p><p>Poster 6: <b>Near-Optimal Machine Teaching via Explanatory Teaching Sets</b><br> Yuxin
Chen</p><p>Poster 7: <b>Factorized Recurrent Neural Architectures for Longer Range Dependence</b><br> Francois
Belletti</p><p>Poster 8: <b>Nonparametric Preference Completion</b><br> Julian
Katz-Samuels</p><p>Poster 9: <b>HONES: A Fast and Tuning-free Homotopy Method For Online Newton Step</b><br> Yuting
Ye</p><p>Poster 10: <b>Robustness of classifiers to uniform \ell_p and Gaussian noise</b><br> Alhussein
Fawzi</p><p>Poster 11: <b>Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD</b><br> Sanghamitra
Dutta</p><p>Poster 12: <b>Comparison Based Learning from Weak Oracles</b><br> Ehsan
Kazemi</p><p>Poster 13: <b>Teacher Improves Learning by Selecting a Training Subset</b><br> Xiaojin
Zhu</p><p>Poster 14: <b>Probability–Revealing Samples</b><br> Krzysztof
Onak</p><p>Poster 15: <b>Topic Compositional Neural Language Model</b><br> Wenlin
Wang</p><p>Poster 16: <b>Reducing Crowdsourcing to Graphon Estimation Statistically</b><br> Christina
Lee</p><p>Poster 17: <b>Nonparametric Bayesian sparse graph linear dynamical systems</b><br> Mingyuan
Zhou</p><p>Poster 18: <b>Learning Structural Weight Uncertainty with Stein Gradient Flows</b><br> Chunyuan
Li</p><p>Poster 19: <b>The Binary Space Partitioning-Tree Process</b><br> Xuhui
Fan</p><p>Poster 20: <b>Robust Maximization of Non-Submodular Objectives</b><br> Ilija
Bogunovic</p><p>Poster 21: <b>FLAG n’ FLARE: Fast Linearly-Coupled Adaptive Gradient Methods</b><br> Fred
Roosta</p><p>Poster 22: <b>Cheap Checking for Cloud Computing: Statistical Analysis via Annotated Data Streams</b><br> Chris
Hickey</p><p>Poster 23: <b>Proximity Variational Inference</b><br> Jaan
Altosaar</p><p>Poster 24: <b>An Analysis of Categorical Distributional Reinforcement Learning</b><br> Mark
Rowland</p><p>Poster 25: <b>Parallel and Distributed MCMC via Shepherding Distributions</b><br> Arkabandhu
Chowdhury</p><p>Poster 26: <b>Inference in Sparse Graphs with Pairwise Measurements and Side Information</b><br> Dylan
Foster</p><p>Poster 27: <b>IHT dies hard: Provable accelerated Iterative Hard Thresholding</b><br> Anastasios
Kyrillidis</p><p>Poster 28: <b>High-dimensional Bayesian optimization via additive models with overlapping groups</b><br> Paul
Rolland</p><p>Poster 29: <b>Learning Hidden Quantum Markov Models</b><br> Siddarth
Srinivasan</p><p>Poster 30: <b>On denoising noisy modulo 1 samples of a function</b><br> Mihai
Cucuringu</p><p>Poster 31: <b>A Generic Approach for Escaping Saddle points</b><br> Manzil
Zaheer</p><p>Poster 32: <b>Nonlinear Weighted Finite Automata</b><br> Tianyu
Li</p><p>Poster 33: <b>Few-shot Generative Modelling with Generative Matching Networks</b><br> Sergey
Bartunov</p><p>Poster 34: <b>A Stochastic Differential Equation Framework for Guiding Online User Activities in Closed Loop</b><br> Yichen
Wang</p><p>Poster 35: <b>Personalized and Private Peer-to-Peer Machine Learning</b><br> Aurélien
Bellet</p><p>Poster 36: <b>Matrix-normal models for fMRI analysis</b><br> Michael
Shvartsman</p><p>Poster 37: <b>A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians</b><br> Slobodan
Mitrovic</p><p>Poster 38: <b>One-shot Coresets: The Case of k-Clustering</b><br> Olivier
Bachem</p><p>Poster 39: <b>Iterative Supervised Principal Components</b><br> Juho
Piironen</p><p>Poster 40: <b>Cause-Effect Inference by Comparing Regression Errors</b><br> Patrick
Bloebaum</p><p>Poster 41: <b>Graphical Models for Non-Negative Data Using Generalized Score Matching</b><br> Shiqing
Yu</p><p>Poster 42: <b>Best arm identification in multi-armed bandits with delayed feedback</b><br> Aditya
Grover</p><p>Poster 43: <b>Approximate Bayesian Computation with Kullback-Leibler Divergence as Data Discrepancy</b><br> Bai
Jiang</p><p>Poster 44: <b>A Unified Dynamic Approach to Sparse Model Selection</b><br> Chendi
Huang</p><p>Poster 45: <b>On Statistical Optimality of Variational Bayes</b><br> Debdeep
Pati</p><p>Poster 46: <b>Stochastic algorithms for entropy-regularized optimal transport problems</b><br> Brahim Khalil
Abid</p><p>Poster 47: <b>Can clustering scale sublinearly with its clusters? A variational EM acceleration of GMMs and k-means</b><br> Dennis
Forster</p><p>Poster 48: <b>Learning Generative Models with Sinkhorn Divergences</b><br> Aude
Genevay</p><p>Poster 49: <b>Product Kernel Interpolation for Scalable Gaussian Processes</b><br> Jacob
Gardner</p><p>Poster 50: <b>Solving lp-norm regularization with tensor kernels</b><br> Saverio
Salzo</p><p>Poster 51: <b>Statistically Efficient Estimation for Non-Smooth Probability Densities</b><br>Masaaki Imaizumi,
Takanori Maehara, Yuichi Yoshida</p><p>Poster 52: <b>Stochastic Zeroth-order Optimization in High Dimensions</b><br>Yining Wang, Arindam Banerjee, Simon Du, Sivaraman Balakrishnan,
Aarti Singh</p><p>Poster 53: <b>Sparse Linear Isotonic Models</b><br>Sheng Chen,
Arindam Banerjee</p><p>Poster 54: <b>Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic Programs</b><br>Lawrence Murray, Daniel Lundén, Jan Kudlicka, David Broman,
Thomas Schön</p><h2><span id=Poster_Session2>Poster Session 2 (April 10)</span></h2><p>Poster 1: <b>Structured Factored Inference for Probabilistic Programming</b><br> Alison
OConnor</p><p>Poster 2: <b>Weighted Tensor Decomposition for Learning Latent Variables with Partial Data</b><br> Omer
Gottesman</p><p>Poster 3: <b>Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach</b><br> Satoshi
Hara</p><p>Poster 4: <b>Finding Global Optima in Nonconvex Stochastic Semidefinite Optimization with Variance Reduction</b><br> Jinshan
ZENG</p><p>Poster 5: <b>Plug-in Estimators for Conditional Expectations and Probabilities</b><br> Steffen
Grunewalder</p><p>Poster 6: <b>Policy Evaluation and Optimization with Continuous Treatments</b><br> Nathan
Kallus</p><p>Poster 7: <b>Tensor Regression Meets Gaussian Processes</b><br> Rose
Yu</p><p>Poster 8: <b>Robust Locally-Linear Controllable Embedding</b><br> Ershad
Banijamali</p><p>Poster 9: <b>Data-Efficient Reinforcement Learning with \\Probabilistic Model Predictive Control</b><br> Marc
Deisenroth</p><p>Poster 10: <b>Smooth and Sparse Optimal Transport</b><br> Mathieu
Blondel</p><p>Poster 11: <b>The Power Mean Laplacian for Multilayer Graph Clustering</b><br> Pedro
Mercado</p><p>Poster 12: <b>Gauged Mini-Bucket Elimination for Approximate Inference</b><br> Adrian
Weller</p><p>Poster 13: <b>Variational Inference based on Robust Divergences</b><br> Futoshi
Futami</p><p>Poster 14: <b>Benefits from Superposed Hawkes Processes</b><br> Hongteng
Xu</p><p>Poster 15: <b>Boosting Variational Inference: an Optimization Perspective</b><br> Francesco
Locatello</p><p>Poster 16: <b>Tree-based Bayesian Mixture Model for Competing Risks</b><br> Alexis
Bellot</p><p>Poster 17: <b>Quotient Normalized Maximum Likelihood Criterion for Learning Bayesian Network Structures</b><br> Tomi
Silander</p><p>Poster 18: <b>Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap</b><br> Aryan
Mokhtari</p><p>Poster 19: <b>Medoids in Almost-Linear Time via Multi-Armed Bandits</b><br> David
Tse</p><p>Poster 20: <b>On the Truly Block Eigensolvers via First-Order Riemannian Optimization</b><br> Zhiqiang
Xu</p><p>Poster 21: <b>Efficient Weight Learning in High-Dimensional Untied MLNs</b><br> Khan Mohammad Al
Farabi</p><p>Poster 22: <b>Beating Monte Carlo Integration: a Nonasymptotic Study of Kernel Smoothing Methods</b><br> Stephan
Clémençon</p><p>Poster 23: <b>On how complexity effects the stability of a predictor</b><br> Joel
Ratsaby</p><p>Poster 24: <b>Contextual Bandits with Stochastic Experts</b><br> Rajat
Sen</p><p>Poster 25: <b>Online Learning with Non-Convex Losses and Non-Stationary Regret</b><br> Xiaobo
Li</p><p>Poster 26: <b>Non-parametric estimation of Jensen-Shannon Divergence in Generative Adversarial Network training</b><br> Mathieu
Sinn</p><p>Poster 27: <b>Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure</b><br> Beilun
Wang</p><p>Poster 28: <b>Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications</b><br> Sijia
Liu</p><p>Poster 29: <b>Robust Vertex Enumeration for Convex Hulls in High Dimensions</b><br> Pranjal
Awasthi</p><p>Poster 30: <b>Turing: Composable inference for probabilistic programming</b><br> Hong
Ge</p><p>Poster 31: <b>Combinatorial Penalties: Which structures are preserved by convex relaxations?</b><br> Marwa
El Halabi</p><p>Poster 32: <b>Metrics for Deep Generative Models</b><br> Nutan
Chen</p><p>Poster 33: <b>Spectral Algorithms for Computing Fair Support Vector Machines</b><br> Mahbod
Olfat</p><p>Poster 34: <b>Optimal Submodular Extensions for Marginal Estimation</b><br> Pankaj
Pansari</p><p>Poster 35: <b>Iterative Spectral Method for Alternative Clustering</b><br> Chieh
Wu</p><p>Poster 36: <b>Differentially Private Regression with Gaussian Processes</b><br> Michael
Smith</p><p>Poster 37: <b>Reconstruction Risk of Convolutional Sparse Dictionary Learning</b><br> Shashank
Singh</p><p>Poster 38: <b>Learning to Round for Discrete Labeling Problems</b><br> Pritish
Mohapatra</p><p>Poster 39: <b>Direct Learning to Rank And Rerank</b><br> Cynthia
Rudin</p><p>Poster 40: <b>Linear Stochastic Approximation: Constant Step-Size and Iterate Averaging</b><br> Chandrashekar
Lakshmi-Narayanan</p><p>Poster 41: <b>Approximate ranking from pairwise comparisons</b><br> Reinhard
Heckel</p><p>Poster 42: <b>Stochastic Multi-armed Bandits in Constant Space</b><br> Ger
Yang</p><p>Poster 43: <b>Multi-objective Contextual Bandit Problem with Similarity Information</b><br> Cem
Tekin</p><p>Poster 44: <b>Scalable Generalized Dynamic Topic Models</b><br> Patrick
Jähnichen</p><p>Poster 45: <b>Growth-Optimal Portfolio Selection under CVaR Constraints</b><br> Guy
Uziel</p><p>Poster 46: <b>Statistical Sparse Online Regression: A Diffusion Approximation Perspective</b><br> Junchi
Li</p><p>Poster 47: <b>Combinatorial Semi-Bandits with Knapsacks</b><br>Karthik Abinav Sankararaman,
Aleksandrs Slivkins</p><p>Poster 48: <b>Online Continuous Submodular Maximization</b><br>Lin Chen, Hamed Hassani,
Amin Karbasi</p><p>Poster 49: <b>Convergence of Value Aggregation for Imitation Learning</b><br>Ching-An Cheng,
Byron Boots</p><p>Poster 50: <b>Competing with Automata-based Expert Sequences</b><br>Scott Yang,
Mehryar Mohri</p><p>Poster 51: <b>A Simple Analysis for Exp-concave Empirical Minimization with Arbitrary Convex Regularizer </b><br>Tianbao Yang, Zhe Li,
Lijun Zhang</p><p>Poster 52: <b>Learning linear structural equation models in polynomial time and sample complexity</b><br>Asish Ghoshal,
Jean Honorio</p><p>Poster 53: <b>Consistent Algorithms for Classification under Complex Losses and Constraints</b><br>Harikrishna
Narasimhan</p><p>Poster 54: <b>Subsampling for Ridge Regression via Regularized Volume Sampling</b><br>Michal Derezinski,
Manfred Warmuth</p><h2><span id=Poster_Session3>Poster Session 3 (April 10)</span></h2><p>Poster 1: <b>Group invariance principles for causal generative models</b><br> Michel
Besserve</p><p>Poster 2: <b>Learning Priors for Invariance</b><br> Eric
Nalisnick</p><p>Poster 3: <b>Catalyst for Gradient-based Nonconvex Optimization</b><br> Courtney
Paquette</p><p>Poster 4: <b>Dropout as a Low-Rank Regularizer for Matrix Factorization</b><br> Jacopo
Cavazza</p><p>Poster 5: <b>Practical Bayesian optimization in the presence of outliers</b><br> Ruben
Martinez-Cantin</p><p>Poster 6: <b>Fast generalization error bound of deep learning from a kernel perspective</b><br> Taiji
Suzuki</p><p>Poster 7: <b>Asynchronous Doubly Stochastic Group Regularized Learning</b><br> Bin
Gu</p><p>Poster 8: <b>The emergence of spectral universality in deep networks</b><br> Jeffrey
Pennington</p><p>Poster 9: <b>Post Selection Inference with Kernels</b><br> Makoto
Yamada</p><p>Poster 10: <b>Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information</b><br> Jakob
Runge</p><p>Poster 11: <b>Nonparametric Sharpe Ratio Function Estimation in Heteroscedastic Regression Models via Convex Optimization</b><br> Joong-Ho
Won</p><p>Poster 12: <b>SDCA-Powered Inexact Dual Augmented Lagrangian Method for Fast CRF Learning</b><br> Xu
Hu</p><p>Poster 13: <b>Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models</b><br> Hugh
Salimbeni</p><p>Poster 14: <b>Semi-Supervised Learning with Competitive Infection Models</b><br> Nir
Rosenfeld</p><p>Poster 15: <b>Random Subspace with Trees for Feature Selection Under Memory Constraints</b><br> Antonio
Sutera</p><p>Poster 16: <b>Bayesian Structure Learning for Dynamic Brain Connectivity</b><br> Michael
Andersen</p><p>Poster 17: <b>Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis</b><br> Hiroyuki
Kasai</p><p>Poster 18: <b>Bayesian Nonparametric Poisson-Process Allocation for Time-Sequence Modeling</b><br> Hongyi
Ding</p><p>Poster 19: <b>Efficient Bandit Combinatorial Optimization Algorithm with Zero-suppressed Binary Decision Diagrams</b><br> Shinsaku
Sakaue</p><p>Poster 20: <b>Online Boosting Algorithms for Multi-label Ranking</b><br> Young Hun
Jung</p><p>Poster 21: <b>Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization</b><br> Fanhua
Shang</p><p>Poster 22: <b>Community Detection in Hypergraphs: Optimal Statistical Limit and Efficient Algorithms</b><br> Chung-Yi
Lin</p><p>Poster 23: <b>Matrix completability analysis via graph k-connectivity</b><br> Dehua
Cheng</p><p>Poster 24: <b>A Nonconvex Proximal Splitting Algorithm under Moreau-Yosida Regularization</b><br> Emanuel
Laude</p><p>Poster 25: <b>Reducing optimization to repeated classification</b><br> Tatsunori
Hashimoto</p><p>Poster 26: <b>Online Ensemble Multi-kernel Learning Adaptive to Non-stationary and Adversarial Environments</b><br> Tianyi
Chen</p><p>Poster 27: <b>Transfer Learning on fMRI Datasets</b><br> Hejia
Zhang</p><p>Poster 28: <b>Gaussian Process Subset Scanning for Anomalous Pattern Detection in Non-iid Data</b><br> William
Herlands</p><p>Poster 29: <b>Nearly second-order optimality of online joint detection and estimation via one-sample update schemes</b><br> Yang
Cao</p><p>Poster 30: <b>Outlier Detection and Robust Estimation in Nonparametric Regression</b><br> Weining
Shen</p><p>Poster 31: <b>Dimensionality Reduced $\ell^{0}$-Sparse Subspace Clustering</b><br> Yingzhen
Yang</p><p>Poster 32: <b>Sum-Product-Quotient Networks</b><br> Or
Sharir</p><p>Poster 33: <b>Nonlinear Structured Signal Estimation in High Dimensions via Iterative Hard Thresholding</b><br> Zhuoran
Yang</p><p>Poster 34: <b>Efficient Bayesian Methods for Counting Processes in Partially Observable Environments</b><br> Ferdian
Jovan</p><p>Poster 35: <b>Stochastic Three-Composite Convex Minimization with a Linear Operator</b><br> Renbo
Zhao</p><p>Poster 36: <b>Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models</b><br> Atsushi
Nitanda</p><p>Poster 37: <b>Bootstrapping EM via Power EM and Convergence in the Naive Bayes Model</b><br> Christos
Tzamos</p><p>Poster 38: <b>Kernel Conditional Exponential Family</b><br> Michael
Arbel</p><p>Poster 39: <b>Achieving the time of 1-NN but the accuracy of k-NN</b><br> Lirong
Xue</p><p>Poster 40: <b>Bayesian Approaches to Distribution Regression</b><br> Ho Chung Leon
Law</p><p>Poster 41: <b>Nested CRP with Hawkes-Gaussian Processes</b><br> Xi
Tan</p><p>Poster 42: <b>Mixed Membership Word Embeddings for Computational Social Science</b><br> James
Foulds</p><p>Poster 43: <b>Learning Determinantal Point Processes in Sublinear Time</b><br> Christophe
Dupuy</p><p>Poster 44: <b>Fully adaptive algorithm for pure exploration in linear bandits</b><br> Liyuan
Xu</p><p>Poster 45: <b>Variational inference for the multi-armed contextual bandit</b><br> Iñigo
Urteaga</p><p>Poster 46: <b>A Provable Algorithm for Learning Interpretable Scoring Systems</b><br> Nataliya
Sokolovska</p><p>Poster 47: <b>An Optimization Approach to Learning Falling Rule Lists</b><br> Chaofan
Chen</p><p>Poster 48: <b>Fast Threshold Tests for Detecting Discrimination</b><br>Emma Pierson, Sam Corbett-Davies,
Sharad Goel</p><p>Poster 49: <b>Parallelised Bayesian Optimisation via Thompson Sampling</b><br>Kirthevasan Kandasamy, Akshay Krishnamurthy,
Jeff Schneider, Barnabas Poczos</p><p>Poster 50: <b>Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition</b><br>Pavel Izmailov, Dmitry Kropotov,
Alexander Novikov</p><p>Poster 51: <b>Factorial HMM with Collapsed Gibbs Sampling for optimizing long-term HIV Therapy</b><br>Amit Gruber, Chen Yanover, Tal El-Hay, Yaara Goldschmidt, Anders Sönnerborg,
Vanni Borghi, Francesca Incardona</p><p>Poster 52: <b>Sketching for Kronecker Product Regression and P-splines</b><br>Huaian Diao, Zhao Song,
Wen Sun, David Woodruff</p><p>Poster 53: <b>Towards Provable Learning of Polynomial Neural Networks Using Low-Rank Matrix Estimation</b><br>Mohammadreza Soltani,
Chinmay Hegde</p><p>Poster 54: <b>Convergence diagnostics for stochastic gradient descent</b><br>Jerry Chee,
Panos Toulis</p><p>Poster 55: <b>Minimax-Optimal Privacy-Preserving Sparse PCA in Distributed Systems</b><br> Jason Ge</p>
<h2><span id=Poster_Session4>Poster Session 4 (April 11)</span></h2><p>Poster 1: <b>Optimal Cooperative Inference</b><br> Scott Cheng-Hsin
Yang</p><p>Poster 2: <b>Human Interaction with Recommendation Systems</b><br> Sven
Schmit</p><p>Poster 3: <b>Convex optimization over intersection of simple sets: improved convergence rate guarantees via exact penalty approach</b><br> Achintya
Kundu</p><p>Poster 4: <b>Towards Memory-Friendly Deterministic Incremental Gradient Method</b><br> Jiahao
Xie</p><p>Poster 5: <b>Independently Interpretable Lasso: A New Regularizer for Sparse Regression with Uncorrelated Variables</b><br> Masaaki
Takada</p><p>Poster 6: <b>AdaGeo: Adaptive Geometric Learning for Optimization and Sampling</b><br> Gabriele
Abbati</p><p>Poster 7: <b>Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method</b><br> Mark
Eisen</p><p>Poster 8: <b>Labeled Graph Clustering via Projected Gradient Descent</b><br> Shiau Hong
Lim</p><p>Poster 9: <b>Discriminative Learning of Prediction Intervals</b><br> Nir
Rosenfeld</p><p>Poster 10: <b>Accelerated Stochastic Power Iteration</b><br> Peng
Xu</p><p>Poster 11: <b>A Bayesian Nonparametric Method for Clustering Imputation and Forecasting in Multivariate Time Series</b><br> FERAS
SAAD</p><p>Poster 12: <b>Bayesian Multi-label Learning with Sparse Features and Labels</b><br> He
Zhao</p><p>Poster 13: <b>Robust Active Label Correction</b><br> Christian
Igel</p><p>Poster 14: <b>Factor Analysis on a Graph</b><br> Masayuki
Karasuyama</p><p>Poster 15: <b>Reparameterizing the Birkhoff Polytope for Variational Permutation Inference</b><br> Gonzalo
Mena</p><p>Poster 16: <b>Provable Estimation of the Number of Blocks in Block Models</b><br> BOWEI
YAN</p><p>Poster 17: <b>Batched Large-scale Bayesian Optimization in High-dimensional Spaces</b><br> Zi
Wang</p><p>Poster 18: <b>Actor-Critic Fictitious Play in Simultaneous Move Multistage Games</b><br> Julien
Perolat</p><p>Poster 19: <b>Online Regression with Partial Information: Generalization and Linear Projection</b><br> Shinji
Ito</p><p>Poster 20: <b>Alpha-expansion is Exact on Stable Instances</b><br> Hunter
Lang</p><p>Poster 21: <b>Adaptive Sampling for Clustered Ranking</b><br> Sumeet
Katariya</p><p>Poster 22: <b>Multiphase MCMC Sampling for Parameter Inference in Nonlinear Ordinary Differential Equations</b><br> Alan
Lazarus</p><p>Poster 23: This poster has been moved</p><p>Poster 24: <b>The Geometry of Random Features</b><br> Adrian
Weller</p><p>Poster 25: <b>Symmetric Variational Autoencoder and Connections to Adversarial Learning</b><br> Liqun
Chen</p><p>Poster 26: <b>Learning Sparse Polymatrix Games in Polynomial Time and Sample Complexity</b><br> Asish
Ghoshal</p><p>Poster 27: <b>A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery</b><br> Xiao
Zhang</p><p>Poster 28: <b>Communication-Avoiding Optimization Methods for Distributed Massive-Scale Sparse Inverse Covariance Estimation</b><br> Penporn
Koanantakool</p><p>Poster 29: <b>Accelerated Stochastic Mirror Descent: From Continuous-time Dynamics to Discrete-time Algorithms</b><br> Pan
Xu</p><p>Poster 30: <b>On the Statistical Efficiency of Compositional Nonparametric Prediction</b><br> Yixi
Xu</p><p>Poster 31: <b>Exploiting Strategy-Space Diversity for Batch Bayesian Optimization</b><br> Sunil
Gupta</p><p>Poster 32: <b>Variational Rejection Sampling</b><br> Aditya
Grover</p><p>Poster 33: <b>Why adaptively collected data have negative bias and how to correct for it.</b><br> Xinkun
Nie</p><p>Poster 34: <b>Generalized Binary Search For Split-Neighborly Problems</b><br> Stephen
Mussmann</p><p>Poster 35: <b>Scalable Hash-Based Estimation of Divergence Measures</b><br> Morteza
Noshad Iranzad</p><p>Poster 36: <b>Semi-Supervised Prediction-Constrained Topic Models</b><br> Michael
Hughes</p><p>Poster 37: <b>Crowdclustering with Partition Labels</b><br> Junxiang
Chen</p><p>Poster 38: <b>Generalized Concomitant Multi-Task Lasso for sparse multimodal regression</b><br> Mathurin
Massias</p><p>Poster 39: <b>Gradient Diversity: a Key Ingredient for Scalable Distributed Learning</b><br> Dong
Yin</p><p>Poster 40: <b>Layerwise Systematic Scan: Deep Boltzmann Machines and Beyond</b><br> Heng
Guo</p><p>Poster 41: <b>Multi-view Metric Learning in Vector-valued Kernel Spaces</b><br> Riikka
Huusari</p><p>Poster 42: <b>Intersection-Validation: A Method for Evaluating Structure Learning without Ground Truth</b><br> Jussi
Viinikka</p><p>Poster 43: <b>Variational Sequential Monte Carlo</b><br>Christian Naesseth,
Scott Linderman, Rajesh Ranganath</p><p>Poster 44: <b>VAE with a VampPrior</b><br>Jakub Tomczak,
Max Welling</p><p>Poster 45: <b>Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes</b><br>Hyunjik Kim
, Yee Whye Teh</p><p>Poster 46: <b>Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models</b><br>Ardavan Saeedi, Matthew Hoffman, Matthew Hoffman, Stephen DiVerdi, Asma Ghandeharioun, Matthew Johnson,
Ryan Adams</p><p>Poster 47: <b>Random Warping Series: A Random Features Method for Time-Series Embedding</b><br>Lingfei Wu, Ian En-Hsu Yen,
Jinfeng Yi, Fangli Xu, Qi Lei, Michael Witbrock</p><p>Poster 48: <b>Efficient and principled score estimation with Nyström kernel exponential families</b><br>Dougal Sutherland, Heiko Strathmann,
Michael Arbel, Arthur Gretton</p><p>Poster 49: <b>Multi-scale Nystrom Method</b><br>Woosang Lim, Rundong Du, Bo Dai,
Kyomin Jung, Le Song</p><p>Poster 50: <b>Batch-Expansion Training: An Efficient Optimization Framework</b><br>Michal Derezinski, Dhruv Mahajan, Sathiya Keerthi, S. V. N. Vishwanathan,
Markus Weimer</p><p>Poster 51: <b>Adaptive balancing of gradient and update computation times using global geometry and approximate subproblems</b><br>Sai Praneeth Reddy Karimireddy,
Sebastian Stich, Martin Jaggi</p><p>Poster 52: <b>Frank-Wolfe Splitting via Augmented Lagrangian Method</b><br>Gauthier Gidel,
Fabian Pedregosa, Simon Lacoste-Julien,</p><p>Poster 53: <b>Structured Optimal Transport</b><br>David Alvarez Melis, Tommi Jaakkola,
Stefanie Jegelka</p><p>Poster 54: <b>Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods</b><br>Robert Gower, Nicolas Le Roux,
Francis Bach</p>
<!--</div>-->