-
Notifications
You must be signed in to change notification settings - Fork 0
/
poster_sessions.html
419 lines (394 loc) · 49.6 KB
/
poster_sessions.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
---
layout: default
---
<script type="text/javascript">
document.getElementById('LNpostersessions').id='leftcurrent';
</script>
<div class="contents">
<h1>AISTATS 2016 Poster Sessions</h1>
<h2>Accepted papers</h2>
All accepted papers are available <a href="http://jmlr.org/proceedings/papers/v51/">here</a>.
<br><br>
<h2>Poster Format</h2>
The poster board is 0.98m (wide) x 2.54m (high). We recommend <b>A0 portrait</b> as
the poster size.
<br>
<img src="{{ site.baseurl }}/image/poster_board.gif" height="400">
<h2><span id="poster_session1">Poster Session 1 (May 9)</span></h2>
<p>Poster 1: <b>Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures</b><br>Mario Lucic, Olivier Bachem, Andreas Krause</p>
<p>Poster 2: <b>Revealing Graph Bandits for Maximizing Local Influence</b><br>Alexandra Carpentier, Michal Valko</p>
<p>Poster 3: <b>Convex block-sparse linear regression with expanders, provably</b><br>Anastasios Kyrillidis, Bubacarr Bah, Rouzbeh Hasheminezhad, Quoc Tran Dinh, Luca Baldassarre, Volkan Cevher</p>
<p>Poster 4: <b>Clamping Improves TRW and Mean Field Approximations</b><br>Adrian Weller, Justin Domke</p>
<p>Poster 5: <b>Control Functionals for Quasi-Monte Carlo Integration</b><br>Chris Oates, Mark Girolami</p>
<p>Poster 6: <b>Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking</b><br>Nicolas Goix, Anne Sabourin, Stéphan Clémençon</p>
<p>Poster 7: <b>A Robust-Equitable Copula Dependence Measure for Feature Selection</b><br>Yale Chang, Yi Li, Adam Ding, Jennifer Dy</p>
<p>Poster 8: <b>Random Forest for the Contextual Bandit Problem</b><br>Raphaël Féraud, Robin Allesiardo, Tanguy Urvoy, Fabrice Clérot</p>
<p>Poster 9: <b>Learning Sparse Additive Models with Interactions in High Dimensions</b><br>Hemant Tyagi, Anastasios Kyrillidis, Bernd Gärtner, Andreas Krause</p>
<p>Poster 10: <b>Bipartite Correlation Clustering - Maximizing Agreements</b><br>Megasthenis Asteris, Anastasios Kyrillidis, Dimitris Papailiopoulos, Alexandros Dimakis</p>
<p>Poster 11: <b>Breaking Sticks and Ambiguities with Adaptive Skip-gram</b><br>Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin, Dmitry Vetrov</p>
<p>Poster 12: <b>Top Arm Identification in Multi-Armed Bandits with Batch Arm Pulls</b><br>Kwang-Sung Jun, Kevin Jamieson, Robert Nowak, Xiaojin Zhu</p>
<p>Poster 13: <b>Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices</b><br>Jonathan Scarlett, Volkan Cevher</p>
<p>Poster 14: <b>Maximum Likelihood for Variance Estimation in High-Dimensional Linear Models</b><br>Lee Dicker, Murat Erdogdu</p>
<p>Poster 15: <b>Scalable Gaussian Process Classification via Expectation Propagation</b><br>Daniel Hernandez-Lobato, Jose Miguel Hernandez-Lobato</p>
<p>Poster 16: <b>Precision Matrix Estimation in High Dimensional Gaussian Graphical Models with Faster Rates</b><br>Lingxiao Wang, Quanquan Gu</p>
<p>Poster 17: <b>On the Reducibility of Submodular Functions</b><br>Jincheng Mei, Hao Zhang, Bao-Liang Lu</p>
<p>Poster 18: <b>Accelerated Stochastic Gradient Descent for Minimizing Finite Sums</b><br>Atsushi Nitanda</p>
<p>Poster 19: <b>Fast Convergence of Online Pairwise Learning Algorithms</b><br>Martin Boissier, Siwei Lyu, Yiming Ying, Ding-Xuan Zhou</p>
<p>Poster 20: <b>Computationally Efficient Bayesian Learning of Gaussian Process State Space Models</b><br>Andreas Svensson, Arno Solin, Simo Särkkä, Thomas Schön</p>
<p>Poster 21: <b>Generalized Ideal Parent (GIP): Discovering non-Gaussian Hidden Variables</b><br>Yaniv Tenzer, Gal Elidan</p>
<p>Poster 22: <b>On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes</b><br>Alex Matthews, James Hensman, Richard Turner, Zoubin Ghahramani</p>
<p>Poster 23: <b>Non-stochastic Best Arm Identification and Hyperparameter Optimization</b><br>Kevin Jamieson Ameet Tawalkar</p>
<p>Poster 24: <b>A Linearly-Convergent Stochastic L-BFGS Algorithm</b><br>Philipp Moritz, Robert Nishihara, Michael Jordan</p>
<p>Poster 25: <b>No Regret Bound for Extreme Bandits</b><br>Robert Nishihara, David Lopez-Paz, Leon Bottou</p>
<p>Poster 26: <b>Online Learning to Rank with Feedback at the Top</b><br>Sougata Chaudhuri, Ambuj Tewari</p>
<p>Poster 27: <b>Score Permutation Based Finite Sample Inference for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Models</b><br>Balazs Csaji</p>
<p>Poster 28: <b>CRAFT: ClusteR-specific Assorted Feature selecTion</b><br>Vikas Garg, Cynthia Rudin, Tommi Jaakkola</p>
<p>Poster 29: <b>Time-Varying Gaussian Process Bandit Optimization</b><br>Ilija Bogunovic, Jonathan Scarlett, Volkan Cevher</p>
<p>Poster 30: <b>Bayes-Optimal Effort Allocation in Crowdsourcing: Bounds and Index Policie</b><br>Weici Hu, Peter Frazier</p>
<p>Poster 31: <b>Bayesian Markov Blanket Estimation</b><br>Dinu Kaufmann, Sonali Parbhoo, Aleksander Wieczorek, Sebastian Keller, David Adametz, Volker Roth</p>
<p>Poster 32: <b>Unsupervised Ensemble Learning with Dependent Classifiers</b><br>Ethan Fetaya, Boaz Nadler, Ariel Jaffe, Ting Ting Jiang, Yuval Kluger</p>
<p>Poster 33: <b>Multi-Level Cause-Effect Systems</b><br>Krzysztof Chalupka, Frederick Eberhardt, Pietro Perona</p>
<p>Poster 34: <b>Deep Kernel Learning</b><br>Andrew Wilson, Zhiting Hu, Ruslan Salakhutdinov, Eric Xing</p>
<p>Poster 35: <b>Latent Point Process Allocation</b><br>Chris Lloyd, Tom Gunter, Michael Osborne, Stephen Roberts, Tom Nickson</p>
<p>Poster 36: <b>Bayesian generalised ensemble Markov chain Monte Carlo</b><br>Jes Frellsen, Ole Winther, Zoubin Ghahramani, Jesper Ferkinghoff-Borg</p>
<p>Poster 37: <b>A Lasso-based Sparse Knowledge Gradient Policy for Sequential Optimal Learning</b><br>Yan Li, Han Liu, Warren Powell</p>
<p>Poster 38: <b>Optimal Statistical and Computational Rates for One Bit Matrix Completion</b><br>Quanquan Gu, Renkun Ni</p>
<p>Poster 39: <b>PAC-Bayesian Bounds based on the Rényi Divergence</b><br>Luc Bégin, Pascal Germain, François Laviolette, Jean-Francis Roy</p>
<p>Poster 40: <b>Simple and Scalable Constrained Clustering: A Generalized Spectral Method</b><br>Mihai Cucuringu, Ioannis Koutis, Gary Miller, Richard Peng, Sanjay Chawla</p>
<p>Poster 41: <b>Geometry Aware Mappings for High Dimensional Sparse Factors</b><br>Avradeep Bhowmik, Nathan Liu, Erheng Zhong, Badri Bhaskar, Suju Rajan</p>
<p>Poster 42: <b>Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree</b><br>Chen-Yu Lee, Patrick Gallagher, Zhuowen Tu</p>
<p>Poster 43: <b>Rivalry of Two Families of Algorithms for Memory-Restricted Streaming PCA</b><br>Chun-Liang Li, Hsuan-Tien Lin, Chi-Jen Lu</p>
<p>Poster 44: <b>Quantization based Fast Inner Product Search</b><br>Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, David Simcha</p>
<p>Poster 45: <b>An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization</b><br>Tuo Zhao, Xingguo Li, Raman Arora, Han Liu, Mingyi Hong</p>
<p>Poster 46: <b>Learning Structured Low-Rank Representation via Matrix Factorization</b><br>Jie Shen,Ping Li</p>
<p>Poster 47: <b>A PAC RL Algorithm for Episodic POMDPs</b><br>Zhaohan Guo, Shayan Doroudi, Emma Brunskill</p>
<p>Poster 48: <b>Large-Scale Optimization Algorithms for Sparse Conditional Gaussian Graphical Models</b><br>Calvin McCarter, Seyoung Kim</p>
<p>Poster 49: <b>Graph Connectivity in Noisy Sparse Subspace Clustering</b><br>Yining Wang, Yu-Xiang Wang, Aarti Singh</p>
<p>Poster 50: <b>The Nonparametric Kernel Bayes Smoother</b><br>Yu Nishiyama, Amir Afsharinejad, Shunsuke Naruse, Byron Boots, Le Song</p>
<p>Poster 51: <b>Universal Models of Multivariate Temporal Point Processes</b><br>Asela Gunawardana, Chris Meek</p>
<p>Poster 52: <b>Nonparametric Budgeted Stochastic Gradient Descent</b><br>Trung Le, Vu Nguyen, Dinh Phung</p>
<p>Poster 53: <b>Online Relative Entropy Policy Search using Reproducing Kernel Hilbert Space Embeddings</b><br>Zhitang Chen, Pascal Poupart, Yanhui Geng</p>
<p>Poster 54: <b>Relationship between PreTraining and Maximum Likelihood Estimation in Deep Boltzmann Machines</b><br>Muneki Yasuda</p>
<p>Poster 55: <b>Enumerating Equivalence Classes of Bayesian Networks using CPDAG Graphs</b><br>Eunice Chen, Arthur Choi, Adnan Darwiche</p>
<p>Poster 56: <b>NuC-MKL: A Convex Approach to Non Linear Multiple Kernel Learning</b><br>Eli Meirom, Pavel Kisilev</p>
<p>Poster 57: <b>Improper Deep Kernels</b><br>Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, Amir Globerson</p>
<p>Poster 58: <b>Randomization and The Pernicious Effects of Limited Budgets on Auction Experiments</b><br>Guillaume Basse, Hossein Azari, Diane Lambert</p>
<p>Poster 59: <b>Mondrian Forests for Large-Scale Regression when Uncertainty Matters</b><br>Balaji Lakshminarayanan, Dan Roy, Yee Whye Teh</p>
<p>Poster 60: <b>Provable Tensor Methods for Learning Mixtures of Generalized Linear Models</b><br>Hanie Sedghi, Majid Janzamin, Anima Anandkumar</p>
<h2><span id="poster_session2">Poster Session 2 (May 10)</span></h2>
<p>Poster 1: <b>C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching</b><br>Daniel Ritchie, Andreas Stuhlmüller, Noah Goodman</p>
<p>Poster 2: <b>Tightness of LP Relaxations for Almost Balanced Models</b><br>Adrian Weller, David Sontag</p>
<p>Poster 3: <b>Inverse Reinforcement Learning with Simultaneous Estimation of Rewards and Dynamics</b><br>Michael Herman, Tobias Gindele, Jörg Wagner, Felix Schmitt, Wolfram Burgard</p>
<p>Poster 4: <b>Survey Propagation beyond Constraint Satisfaction Problems</b><br>Christopher Srinivasa, Siamak Ravanbakhsh, Brendan Frey</p>
<p>Poster 5: <b>Dreaming More Data: Class-dependent Distributions over Diffeomorphisms for Learned Data Augmentation</b><br>Søren Hauberg, Oren Freifeld, Anders Boesen Lindbo Larsen, John Fisher, Lars Hansen</p>
<p>Poster 6: <b>K2-ABC: Approximate Bayesian Computation with Kernel Embeddings</b><br>Mijung Park, Wittawat Jitkrittum, Dino Sejdinovic</p>
<p>Poster 7: <b>Fast Dictionary Learning with a Smoothed Wasserstein Loss</b><br>Antoine Rolet, Marco Cuturi, Gabriel Peyré</p>
<p>Poster 8: <b>New Resistance Distances with Global Information on Large Graphs</b><br>Canh Hao Nguyen, Hiroshi Mamitsuka</p>
<p>Poster 9: <b>Batch Bayesian Optimization via Local Penalization</b><br>Javier Gonzalez, Zhenwen Dai, Philipp Hennig, Neil Lawrence</p>
<p>Poster 10: <b>Learning relationships between data obtained independently</b><br>Alexandra Carpentier, Teresa Schlueter</p>
<p>Poster 11: <b>Fast and Scalable Structural SVM with Slack Rescaling</b><br>Heejin Choi, Ofer Meshi, Nathan Srebro</p>
<p>Poster 12: <b>Probabilistic Approximate Least-Squares</b><br>Simon Bartels, Philipp Hennig</p>
<p>Poster 13: <b>Approximate Inference Using DC Programming For Collective Graphical Models</b><br>Thien Nguyen, Akshat Kumar, Hoong Chuin Lau, Daniel Sheldon</p>
<p>Poster 14: <b>Sequential Inference for Deep Gaussian Process</b><br>Yali Wang, Marcus Brubaker, Brahim Chaib-draa, Raquel Urtasun</p>
<p>Poster 15: <b>Variational Tempering</b><br>Stephan Mandt, James McInerney, Farhan Abrol, Rajesh Ranganath, David Blei</p>
<p>Poster 16: <b>On Convergence of Model Parallel Proximal Gradient Algorithm for Stale Synchronous Parallel System</b><br>Yi Zhou, Yaoliang Yu, Wei Dai, Yingbin Liang, Eric Xing</p>
<p>Poster 17: <b>Scalable MCMC for Mixed Membership Stochastic Blockmodels</b><br>Wenzhe Li, Max Welling, Sungjin Ahn</p>
<p>Poster 18: <b>Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo</b><br>Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, Harri Lähdesmäki</p>
<p>Poster 19: <b>A Deep Generative Deconvolutional Image Model</b><br>Yunchen Pu, Xin Yuan, Andrew Stevens, Chunyuan Li, Lawrence Carin</p>
<p>Poster 20: <b>Distributed Multi-Task Learning</b><br>Jialei Wang, Mladen Kolar, Nathan Srebro</p>
<p>Poster 21: <b>A Fixed-Point Operator for Inference in Variational Bayesian Latent Gaussian Models</b><br>Rishit Sheth, Roni Khardon</p>
<p>Poster 22: <b>Learning Probabilistic Submodular Diversity Models Via Noise Contrastive Estimation</b><br>Sebastian Tschiatschek, Josip Djolonga, Andreas Krause</p>
<p>Poster 23: <b>Fast Saddle-Point Algorithm for Generalized Dantzig Selector and FDR Control with the Ordered $\ell_1$-Norm</b><br>Sangkyun Lee, Damian Brzyski, Malgorzata Bogdan</p>
<p>Poster 24: <b>GLASSES: Relieving The Myopia Of Bayesian Optimisation</b><br>Javier Gonzalez, Michael Osborne, Neil Lawrence</p>
<p>Poster 25: <b>Stochastic Variational Inference for the HDP-HMM</b><br>Aonan Zhang, San Gultekin, John Paisley</p>
<p>Poster 26: <b>Stochastic Neural Networks with Monotonic Activation Functions</b><br>Siamak Ravanbakhsh, Barnabas Poczos, Jeff Schneider, Dale Schuurmans, Russell Greiner</p>
<p>Poster 27: <b>(Bandit) Convex Optimization with Biased Noisy Gradient Oracles</b><br>Xiaowei Hu, Prashanth L.A., András György, Csaba Szepesvari</p>
<p>Poster 28: <b>Variational Gaussian Copula Inference</b><br>Shaobo Han, Xuejun Liao, David Dunson, Lawrence Carin, <span style="font-style: normal"></p>
<p>Poster 29: <b>Low-Rank Approximation of Weighted Tree Automata</b><br>Guillaume Rabusseau, Borja Balle, Shay Cohen</p>
<p>Poster 30: <b>Accelerating Optimization via Adaptive Prediction</b><br>Scott Yang, Mehryar Mohri</p>
<p>Poster 31: <b>Model-based Co-clustering for High Dimensional Sparse Data</b><br>Aghiles Salah, Nicoleta Rogovschi, Mohamed Nadif</p>
<p>Poster 32: <b>DUAL-LOCO: Distributing Statistical Estimation Using Random Projections</b><br>Christina Heinze, Brian McWilliams, Nicolai Meinshausen</p>
<p>Poster 33: <b>High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models</b><br>Chun-Liang Li, Barnabas Poczos, Jeff Schneider, Kirthevasan Kandasamy</p>
<p>Poster 34: <b>On the Use of Non-Stationary Strategies for Solving Two-Player Zero-Sum Markov Games</b><br>Julien Perolat, Bilal Piot, Bruno Scherrer, Olivier Pietquin</p>
<p>Poster 35: <b>Manifold Learning with Adaptive Spectral Transform</b><br>Hanxiao Liu, Yiming Yang</p>
<p>Poster 36: <b>Pseudo-Marginal Slice Sampling</b><br>Iain Murray, Matthew Graham</p>
<p>Poster 37: <b>How to learn a graph from smooth signals</b><br>Vassilis Kalofolias</p>
<p>Poster 38: <b>Pareto Front Identification from Stochastic Bandit Feedback</b><br>Peter Auer, Chao-Kai Chiang, Ronald Ortner, Madalina Drugan</p>
<p>Poster 39: <b>Sketching, embedding and dimensionality reduction in information theoretic spaces</b><br>Amir Ali Abdullah, Suresh Venkatasubramanian, Ravi Kumar, Sergei Vassilvitskii, Andrew McGregor</p>
<p>Poster 40: <b>AdaDelay: Delay Adaptive Distributed Stochastic Optimization</b><br>Suvrit Sra, Adams Wei Yu, Mu Li, Alex Smola</p>
<p>Poster 41: <b>Exponential Stochastic Cellular Automata for Massively Parallel Inference</b><br>Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy Steele</p>
<p>Poster 42: <b>Globally Sparse Probabilistic PCA</b><br>Pierre-Alexandre Mattei, Charles Bouveyron, Pierre Latouche</p>
<p>
<font color="red">(Best paper award)</font><br>
Poster 43: <b>Provable Bayesian Inference via Particle Mirror Descent</b><br>Bo Dai, Niao He, Hanjun Dai, Le Song</p>
<p>Poster 44: <b>Unsupervised Feature Selection by Preserving Stochastic Neighbors</b><br>Xiaokai Wei, Philip S. Yu</p>
<p>Poster 45: <b>Improved Learning Complexity in Combinatorial Pure Exploration Bandits</b><br>Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Ronald Ortner, Peter Bartlett</p>
<p>Poster 46: <b>Scalable Gaussian Processes for Characterizing Multidimensional Change Surfaces</b><br>William Herlands, Andrew Wilson, Seth Flaxman, Daniel Neill, Wilbert Van Panhuis, Eric Xing, Hannes Nickisch</p>
<p>Poster 47: <b>Optimization as Estimation with Gaussian Processes in Bandit Settings</b><br>Zi Wang, Bolei Zhou, Stefanie Jegelka</p>
<p>Poster 48: <b>Inference for High-dimensional Exponential Family Graphical Models</b><br>Jialei Wang, Mladen Kolar</p>
<p>Poster 49: <b>Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization</b><br>Changyou Chen, David Carlson, Zhe Gan, Chunyuan Li, Lawrence Carin</p>
<p>Poster 50: <b>Fitting Spectral Decay with the $k$-Support Norm</b><br>Andrew McDonald, Massimiliano Pontil, Dimitris Stamos</p>
<p>Poster 51: <b>Early Stopping as Nonparametric Variational Inference</b><br>David Duvenaud, Dougal Maclaurin, Ryan Adams</p>
<p>Poster 52: <b>Bayesian Nonparametric Kernel-Learning</b><br>Junier B. Oliva, Avinava Dubey, Andrew Wilson, Barnabas Poczos, Jeff Schneider, Eric Xing</p>
<p>Poster 53: <b>Tight Variational Bounds via Random Projections and I-Projections</b><br>Lun-Kai Hsu, Tudor Achim, Stefano Ermon</p>
<p>Poster 54: <b>Bethe Learning of Graphical Models via MAP Decoding</b><br>Kui Tang, Nicholas Ruozzi, David Belanger, Tony Jebara</p>
<p>Poster 55: <b>DREVS: Determinantal Regularization for Ensemble Variable Selection</b><br>Veronika Rockova, Gemma Moran, Edward George</p>
<p>Poster 56: <b>Scalable and Sound Low-Rank Tensor Learning</b><br>Hao Cheng, Yaoliang Yu, Xinhua Zhang, Eric Xing, Dale Schuurmans</p>
<p>Poster 57: <b>Efficient Non-negative Matrix Factorization for Discrete Data with Structural Side-Information</b><br>Changwei Hu, Piyush Rai, Lawrence Carin</p>
<p>Poster 58: <b>Scalable Bilinear Non-negative Latent Factor Models for Multi-Relational Data</b><br>Changwei Hu, Piyush Rai, Lawrence Carin</p>
<p>Poster 59: <b>Consistently Estimating Markov Chains with Noisy Aggregate Data</b><br>Garrett Bernstein, Daniel Sheldon</p>
<p>Poster 60: <b>Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction</b><br>Gavin Taylor, Tom Goldstein</p>
<p>Poster 61: <b>Unbounded Bayesian Optimization via Regularization</b><br>Bobak Shahriari, Alexandre Bouchard-Cote, Nando de Freitas</p>
<p>Poster 62: <b>Non-Gaussian Component Analysis with Log-Density Gradient Estimation</b><br>Hiroaki Sasaki, Gang Niu, Masashi Sugiyama</p>
<p>Poster 63: <b>Parallel Markov Chain Monte Carlo via Spectral Clustering</b><br>Guillaume Basse, Aaron Smith, Natesh Pillai</p>
<h2><span id="poster_session3">Poster Session 3 (May 11)</span></h2>
<b>In addition to AISTATS 2016 posters, MLSS posters will be displayed in this
session.</b>
<p>Poster 1: <b>Probability Inequalities for Kernel Embeddings in Sampling without Replacement</b><br>Markus Schneider</p>
<p>Poster 2: <b>Tensor vs Matrix Methods: Robust Tensor Decomposition under Block Sparse Perturbations</b><br>Anima Anandkumar, Prateek Jain, Yang Shi, Niranjan Uma Naresh</p>
<p>Poster 3: <b>Nearly optimal classification for semimetrics</b><br>Lee-Ad Gottlieb, Aryeh Kontorovich, Pinhas Nisnevitch</p>
<p>Poster 4: <b>Large-Scale Semi-Supervised Learning Using Streaming Approximation</b><br>Sujith Ravi, Qiming Diao</p>
<p>Poster 5: <b>Low-Rank and Sparse Structure Pursuit via Alternating Minimization</b><br>Quanquan Gu, Zhaoran Wang, Han Liu</p>
<p>Poster 6: <b>Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization</b><br>Fanhua Shang, Yuanyuan Liu, James Cheng</p>
<p>
<font color="red">(Best paper award)</font><br>
Poster 7: <b>Scalable geometric density estimation</b><br>Ye Wang, Antonio Canale, David Dunson</p>
<p>Poster 8: <b>Ordered Weighted l1 Regularized Regression with Strongly Correlated Covariates: Theoretical Aspects</b><br>Mario Figueiredo, Robert Nowak</p>
<p>Poster 9: <b>A Convex Surrogate Operator for General Non-Modular Loss Functions</b><br>Jiaqian Yu, Matthew Blaschko</p>
<p>Poster 10: <b>Online learning with noisy side observations</b><br>Tomáš Kocák, Gergely Neu, Michal Valko</p>
<p>Poster 11: <b>Black-Box Policy Search with Probabilistic Programs</b><br>Jan-Willem Vandemeent, Brooks Paige, David Tolpin, Frank Wood</p>
<p>Poster 12: <b>Efficient Bregman Projections onto the Generalized Permutahedron</b><br>Cong Han Lim, Stephen Wright</p>
<p>Poster 13: <b>Searching for Generalized Instrumental Variables</b><br>Benito Van der Zander, Maciej Liśkiewicz</p>
<p>Poster 14: <b>Controlling Bias in Adaptive Data Analysis Using Information Theory</b><br>Daniel Russo, James Zou</p>
<p>Poster 15: <b>A Column Generation Bound Minimization Approach with PAC-Bayesian Generalization Guarantees</b><br>François Laviolette, Mario Marchand, Jean-Francis Roy</p>
<p>Poster 16: <b>Graph Sparsification Approaches for Laplacian Smoothing Problems</b><br>Veeru Sadhanala, Yu-Xiang Wang, Ryan Tibshirani, Alex Smola</p>
<p>Poster 17: <b>Scalable Exemplar Clustering and Facility Location via Augmented Block Coordinate Descent with Column Generation</b><br>Ian En-Hsu Yen, Dmitry Malioutov, Abhishek Kumar</p>
<p>Poster 18: <b>Robust Covariate Shift Regression</b><br>Xiangli Chen, Brian Ziebart, Mathew Monfort, Anqi Liu</p>
<p>Poster 19: <b>On Lloyd's algorithm: new theoretical insights for clustering in practice</b><br>Cheng Tang, Claire Monteleoni</p>
<p>Poster 20: <b>Towards stability and optimality in stochastic gradient descent</b><br>Panos Toulis, Dustin Tran, Edo Airoldi</p>
<p>Poster 21: <b>Communication Efficient Distributed Agnostic Boosting</b><br>Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau</p>
<p>Poster 22: <b>Differentially Private Causal Inference</b><br>Matt Kusner, Yu Sun, Karthik Sridharan, Kilian Weinberger</p>
<p>Poster 23: <b>Efficient Sampling for k-Determinantal Point Processes</b><br>Chengtao Li, Stefanie Jegelka,Suvrit Sra</p>
<p>Poster 24: <b>A Fast and Reliable Policy Improvement Algorithm</b><br>Yasin Abbasi-Yadkori, Peter Bartlett, Stephen Wright</p>
<p>Poster 25: <b>Learning Sigmoid Belief Networks via Monte Carlo Expectation Maximization</b><br>Zhao Song, Ricardo Henao, David Carlson, Lawrence Carin</p>
<p>Poster 26: <b>Active Learning Algorithms for Graphical Model Selection</b><br>Gautamd Dasarathy, Aarti Singh, Maria-Florina Balcan, Jong Park</p>
<p>Poster 27: <b>Streaming Kernel Principal Component Analysis</b><br>Jeff Phillips, Mina Ghashami, Daniel Perry</p>
<p>Poster 28: <b>Back to the future: Radial Basis Function networks revisited</b><br>Qichao Que, Mikhail Belkin</p>
<p>Poster 29: <b>Cut Pursuit: fast algorithms to learn piecewise constant functions</b><br>Loic Landrieu, Guillaume Obozinski</p>
<p>Poster 30: <b>Loss Bounds and Time Complexity for Speed Priors</b><br>Daniel Filan, Jan Leike, Marcus Hutter</p>
<p>Poster 31: <b>NYTRO: When Subsampling Meets Early Stopping</b><br>Raffaello Camoriano, Lorenzo Rosasco, Alessandro Rudi, Tomás M. Angles L.</p>
<p>Poster 32: <b>Spectral M-estimation</b><br>Dustin Tran, Minjae Kim, Finale Doshi-Velez</p>
<p>Poster 33: <b>Chained Gaussian Processes</b><br>Alan Saul, James Hensman, Aki Vehtari, Neil Lawrence</p>
<p>
<font color="red">(Best paper award)</font><br>
Poster 34: <b>Multiresolution Matrix Compression</b><br>Nedelina Teneva, Pramod Kaushik Mudrakarta, Risi Kondor</p>
<p>Poster 35: <b>Supervised neighborhoods for distributed nonparametric regression</b><br>Adam Bloniarz, Ameet Tawalkar, Bin Yu, Christopher Wu</p>
<p>Poster 36: <b>Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation</b><br>Laura Balzano, Dejiao Zhang</p>
<p>Poster 37: <b>Online and Distributed Bayesian Moment Matching for SPNs</b><br>Abdullah Rashwan, Pascal Poupart, Han Zhao</p>
<p>Poster 38: <b>Online (and Offline) Robust PCA: Novel Algorithms and Correctness Results</b><br>Jinchun Zhan, Brian Lois, Han Guo, Namrata Vaswani</p>
<p>Poster 39: <b>Parallel Majorization Minimization with Dynamically Restricted Domains for Nonconvex Optimization</b><br>Yan Kaganovsky, Ikenna Odinaka, David Carlson, Lawrence Carin</p>
<p>Poster 40: <b>Discriminative Structure Learning of Arithmetic Circuits</b><br>Amirmohammad Rooshenas, Daniel Lowd</p>
<p>Poster 41: <b>One Scan 1-Bit Compressed Sensing</b><br>Ping Li</p>
<h2>MLSS Posters in Session 3 (May 11)</h2>
<p>Poster 42: <b>Neural Networks in Sensors</b><br> Gilles Backhus</p>
<p>Poster 43: <b>Accurate high-dimensional discrete inference with EP approximations. Applications in digital communications.</b><br> Pablo Martinez Olmos</p>
<p>Poster 44: <b>Early identification of patients at risk of drop-out during a 4-week inpatient psychiatric rehabilitation program</b><br> Massimiliano Grassi</p>
<p>Poster 45: <b>Active Exploration and Learning of Skill Hierarchies</b><br> Sébastien Forestier</p>
<p>Poster 46: <b>Online Active Learning for Linear Regression</b><br> Carlos Riquelme</p>
<p>Poster 47: <b>Non-monotone Quadratic Potential Games</b><br> Javier Zazo Ruiz</p>
<p>Poster 48: <b>Automated music composition – Bridging time scales in neural networks</b><br> Florian Colombo</p>
<p>Poster 49: <b>Semi-Supervised Hidden Markov Jump Processes for Human Activity Recognition</b><br> Alfredo Nazábal</p>
<p>Poster 50: <b>Semantic Parsing through Seq2seq Prediction of Canonical Forms</b><br> Chunyang Xiao</p>
<p>Poster 51: <b>Effect of running on spatial integration in different classes of neurons of mouse visual cortex</b><br> Mario Dipoppa</p>
<p>Poster 52: <b>HIV Therapy Selection with infinite POMDPs</b><br> Sonali Parbhoo</p>
<p>Poster 53: <b>Modeling the human-algorithm interaction in recommendation systems</b><br> Sven Schmit</p>
<p>Poster 54: <b>SGD-Trust: Stabilizing Stochastic Gradients</b><br> Arturo Fernandez</p>
<p>Poster 55: <b>Extreme Bandits with Graph Side Information</b><br> Andrea Locatelli</p>
<p>Poster 56: <b>Bandits with Knapsacks for Interactive Education Software</b><br> Ciara Pike-Burke</p>
<p>Poster 57: <b>Predicting Heart Failure Deterioration using Physical Activity Recordings</b><br> Johanna Ernst</p>
<p>Poster 58: <b>Electronic deep neural networks for ultra-efficient data processing</b><br> Jonathan Binas</p>
<p>Poster 59: <b>Deep learning methods for semantic parsing on WikiData</b><br> Daniil Sorokin</p>
<p>Poster 60: <b>Simplifying Regularizing and Strenghtening Sum-Product Networks Structure Learning</b><br> Antonio Vergari</p>
<p>Poster 61: <b>Artificial neuron meets real neuron: pattern selectivity in V4</b><br> Reza Abbasi Asl</p>
<p>Poster 62: <b>Efficient Bayesian regression with the Laplacian kernel using the Mondrian process</b><br> Matej Balog</p>
<p>Poster 63: <b>Acceleration of convolutional neural networks</b><br> Aizhan Ibraimova</p>
<p>Poster 64: <b>Neural Network Interpolators for the Large Scale Structure of the Universe</b><br> Joseph Faulkner</p>
<p>Poster 65: <b>Automated quantitative analyses of collectively migrating malaria parasites</b><br> Sabrina Rossberger</p>
<p>Poster 66: <b>Using cloud computing to study the Extended Spring Indices.</b><br> Emma Izquierdo-Verdiguier</p>
<p>Poster 67: <b>How to find a biomarker to accurately diagnose the early stage of Parkinson’s Disease? An analysis of time-frequency activity and connectivity patterns using resting-state fMRI</b><br> Katherine Baquero</p>
<p>Poster 68: <b>Hidden semi-Markov Models comparison with GMM and HMM and applications to audio processing</b><br> Lilian Besson</p>
<p>Poster 69: <b>Modeling the Dynamics of Online Learning Activity</b><br> Charalampos Mavroforakis</p>
<p>Poster 70: <b>Generic Properties of Scattering Networks</b><br> Thomas Wiatowski</p>
<p>Poster 71: <b>Causal Information Bottleneck</b><br> Aleksander Wieczorek</p>
</div>
<!--back up -->
<!--<h2><span id="poster_session1">Poster Session 1 (May 9)</span></h2>-->
<!--<p>5: <b>Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures</b><br>Mario Lucic, Olivier Bachem, Andreas Krause</p>-->
<!--<p>8: <b>Revealing Graph Bandits for Maximizing Local Influence</b><br>Alexandra Carpentier, Michal Valko</p>-->
<!--<p>9: <b>Convex block-sparse linear regression with expanders, provably</b><br>Anastasios Kyrillidis, Bubacarr Bah, Rouzbeh Hasheminezhad, Quoc Tran Dinh, Luca Baldassarre, Volkan Cevher</p>-->
<!--<p>12: <b>Clamping Improves TRW and Mean Field Approximations</b><br>Adrian Weller, Justin Domke</p>-->
<!--<p>21: <b>Control Functionals for Quasi-Monte Carlo Integration</b><br>Chris Oates, Mark Girolami</p>-->
<!--<p>26: <b>Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking</b><br>Nicolas Goix, Anne Sabourin, Stéphan Clémençon</p>-->
<!--<p>30: <b>A Robust-Equitable Copula Dependence Measure for Feature Selection</b><br>Yale Chang, Yi Li, Adam Ding, Jennifer Dy</p>-->
<!--<p>34: <b>Random Forest for the Contextual Bandit Problem</b><br>Raphaël Féraud, Robin Allesiardo, Tanguy Urvoy, Fabrice Clérot</p>-->
<!--<p>50: <b>Learning Sparse Additive Models with Interactions in High Dimensions</b><br>Hemant Tyagi, Anastasios Kyrillidis, Bernd Gärtner, Andreas Krause</p>-->
<!--<p>51: <b>Bipartite Correlation Clustering - Maximizing Agreements</b><br>Megasthenis Asteris, Anastasios Kyrillidis, Dimitris Papailiopoulos, Alexandros Dimakis</p>-->
<!--<p>52: <b>Breaking Sticks and Ambiguities with Adaptive Skip-gram</b><br>Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin, Dmitry Vetrov</p>-->
<!--<p>58: <b>Top Arm Identification in Multi-Armed Bandits with Batch Arm Pulls</b><br>Kwang-Sung Jun, Kevin Jamieson, Robert Nowak, Xiaojin Zhu</p>-->
<!--<p>63: <b>Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices</b><br>Jonathan Scarlett, Volkan Cevher</p>-->
<!--<p>68: <b>Maximum Likelihood for Variance Estimation in High-Dimensional Linear Models</b><br>Lee Dicker, Murat Erdogdu</p>-->
<!--<p>76: <b>Scalable Gaussian Process Classification via Expectation Propagation</b><br>Daniel Hernandez-Lobato, Jose Miguel Hernandez-Lobato</p>-->
<!--<p>77: <b>Precision Matrix Estimation in High Dimensional Gaussian Graphical Models with Faster Rates</b><br>Lingxiao Wang, Quanquan Gu</p>-->
<!--<p>80: <b>On the Reducibility of Submodular Functions</b><br>Jincheng Mei, Hao Zhang, Bao-Liang Lu</p>-->
<!--<p>82: <b>Accelerated Stochastic Gradient Descent for Minimizing Finite Sums</b><br>Atsushi Nitanda</p>-->
<!--<p>83: <b>Fast Convergence of Online Pairwise Learning Algorithms</b><br>Martin Boissier, Siwei Lyu, Yiming Ying, Ding-Xuan Zhou</p>-->
<!--<p>85: <b>Computationally Efficient Bayesian Learning of Gaussian Process State Space Models</b><br>Andreas Svensson, Arno Solin, Simo Särkkä, Thomas Schön</p>-->
<!--<p>88: <b>Generalized Ideal Parent (GIP): Discovering non-Gaussian Hidden Variables</b><br>Yaniv Tenzer, Gal Elidan</p>-->
<!--<p>92: <b>On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes</b><br>Alex Matthews, James Hensman, Richard Turner, Zoubin Ghahramani</p>-->
<!--<p>95: <b>Non-stochastic Best Arm Identification and Hyperparameter Optimization</b><br>Kevin Jamieson Ameet Tawalkar</p>-->
<!--<p>99: <b>A Linearly-Convergent Stochastic L-BFGS Algorithm</b><br>Philipp Moritz, Robert Nishihara, Michael Jordan</p>-->
<!--<p>103: <b>No Regret Bound for Extreme Bandits</b><br>Robert Nishihara, David Lopez-Paz, Leon Bottou</p>-->
<!--<p>105: <b>Online Learning to Rank with Feedback at the Top</b><br>Sougata Chaudhuri, Ambuj Tewari</p>-->
<!--<p>109: <b>Score Permutation Based Finite Sample Inference for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Models</b><br>Balazs Csaji</p>-->
<!--<p>111: <b>CRAFT: ClusteR-specific Assorted Feature selecTion</b><br>Vikas Garg, Cynthia Rudin, Tommi Jaakkola</p>-->
<!--<p>127: <b>Time-Varying Gaussian Process Bandit Optimization</b><br>Ilija Bogunovic, Jonathan Scarlett, Volkan Cevher</p>-->
<!--<p>134: <b>Bayes-Optimal Effort Allocation in Crowdsourcing: Bounds and Index Policie</b><br>Weici Hu, Peter Frazier</p>-->
<!--<p>135: <b>Bayesian Markov Blanket Estimation</b><br>Dinu Kaufmann, Sonali Parbhoo, Aleksander Wieczorek, Sebastian Keller, David Adametz, Volker Roth</p>-->
<!--<p>148: <b>Unsupervised Ensemble Learning with Dependent Classifiers</b><br>Ethan Fetaya, Boaz Nadler, Ariel Jaffe, Ting Ting Jiang, Yuval Kluger</p>-->
<!--<p>150: <b>Multi-Level Cause-Effect Systems</b><br>Krzysztof Chalupka, Frederick Eberhardt, Pietro Perona</p>-->
<!--<p>151: <b>Deep Kernel Learning</b><br>Andrew Wilson, Zhiting Hu, Ruslan Salakhutdinov, Eric Xing</p>-->
<!--<p>157: <b>Latent Point Process Allocation</b><br>Chris Lloyd, Tom Gunter, Michael Osborne, Stephen Roberts, Tom Nickson</p>-->
<!--<p>161: <b>Bayesian generalised ensemble Markov chain Monte Carlo</b><br>Jes Frellsen, Ole Winther, Zoubin Ghahramani, Jesper Ferkinghoff-Borg</p>-->
<!--<p>162: <b>A Lasso-based Sparse Knowledge Gradient Policy for Sequential Optimal Learning</b><br>Yan Li, Han Liu, Warren Powell</p>-->
<!--<p>166: <b>Optimal Statistical and Computational Rates for One Bit Matrix Completion</b><br>Quanquan Gu, Renkun Ni</p>-->
<!--<p>169: <b>PAC-Bayesian Bounds based on the Rényi Divergence</b><br>Luc Bégin, Pascal Germain, François Laviolette, Jean-Francis Roy</p>-->
<!--<p>171: <b>Simple and Scalable Constrained Clustering: A Generalized Spectral Method</b><br>Mihai Cucuringu, Ioannis Koutis, Gary Miller, Richard Peng, Sanjay Chawla</p>-->
<!--<p>178: <b>Geometry Aware Mappings for High Dimensional Sparse Factors</b><br>Avradeep Bhowmik, Nathan Liu, Erheng Zhong, Badri Bhaskar, Suju Rajan</p>-->
<!--<p>180: <b>Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree</b><br>Chen-Yu Lee, Patrick Gallagher, Zhuowen Tu</p>-->
<!--<p>181: <b>Rivalry of Two Families of Algorithms for Memory-Restricted Streaming PCA</b><br>Chun-Liang Li, Hsuan-Tien Lin, Chi-Jen Lu</p>-->
<!--<p>185: <b>Quantization based Fast Inner Product Search</b><br>Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, David Simcha</p>-->
<!--<p>186: <b>An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization</b><br>Tuo Zhao, Xingguo Li, Raman Arora, Han Liu, Mingyi Hong</p>-->
<!--<p>187: <b>Learning Structured Low-Rank Representation via Matrix Factorization</b><br>Jie Shen,Ping Li</p>-->
<!--<p>188: <b>A PAC RL Algorithm for Episodic POMDPs</b><br>Zhaohan Guo, Shayan Doroudi, Emma Brunskill</p>-->
<!--<p>191: <b>Large-Scale Optimization Algorithms for Sparse Conditional Gaussian Graphical Models</b><br>Calvin McCarter, Seyoung Kim</p>-->
<!--<p>194: <b>Graph Connectivity in Noisy Sparse Subspace Clustering</b><br>Yining Wang, Yu-Xiang Wang, Aarti Singh</p>-->
<!--<p>198: <b>The Nonparametric Kernel Bayes Smoother</b><br>Yu Nishiyama, Amir Afsharinejad, Shunsuke Naruse, Byron Boots, Le Song</p>-->
<!--<p>199: <b>Universal Models of Multivariate Temporal Point Processes</b><br>Asela Gunawardana, Chris Meek</p>-->
<!--<p>200: <b>Nonparametric Budgeted Stochastic Gradient Descent</b><br>Trung Le, Vu Nguyen, Dinh Phung</p>-->
<!--<p>201: <b>Online Relative Entropy Policy Search using Reproducing Kernel Hilbert Space Embeddings</b><br>Zhitang Chen, Pascal Poupart, Yanhui Geng</p>-->
<!--<p>204: <b>Relationship between PreTraining and Maximum Likelihood Estimation in Deep Boltzmann Machines</b><br>Muneki Yasuda</p>-->
<!--<p>211: <b>Enumerating Equivalence Classes of Bayesian Networks using CPDAG Graphs</b><br>Eunice Chen, Arthur Choi, Adnan Darwiche</p>-->
<!--<p>218: <b>NuC-MKL: A Convex Approach to Non Linear Multiple Kernel Learning</b><br>Eli Meirom, Pavel Kisilev</p>-->
<!--<p>413: <b>Improper Deep Kernels</b><br>Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, Amir Globerson</p>-->
<!--<p>515: <b>Randomization and The Pernicious Effects of Limited Budgets on Auction Experiments</b><br>Guillaume Basse, Hossein Azari, Diane Lambert</p>-->
<!--<p>546: <b>Mondrian Forests for Large-Scale Regression when Uncertainty Matters</b><br>Balaji Lakshminarayanan, Dan Roy, Yee Whye Teh</p>-->
<!--<h2><span id="poster_session2">Poster Session 2 (May 10)</span></h2>-->
<!--<p>10: <b>C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching</b><br>Daniel Ritchie, Andreas Stuhlmüller, Noah Goodman</p>-->
<!--<p>13: <b>Tightness of LP Relaxations for Almost Balanced Models</b><br>Adrian Weller, David Sontag</p>-->
<!--<p>37: <b>Inverse Reinforcement Learning with Simultaneous Estimation of Rewards and Dynamics</b><br>Michael Herman, Tobias Gindele, Jörg Wagner, Felix Schmitt, Wolfram Burgard</p>-->
<!--<p>106: <b>Survey Propagation beyond Constraint Satisfaction Problems</b><br>Christopher Srinivasa, Siamak Ravanbakhsh, Brendan Frey</p>-->
<!--<p>147: <b>Dreaming More Data: Class-dependent Distributions over Diffeomorphisms for Learned Data Augmentation</b><br>Søren Hauberg, Oren Freifeld, Anders Boesen Lindbo Larsen, John Fisher, Lars Hansen</p>-->
<!--<p>159: <b>K2-ABC: Approximate Bayesian Computation with Kernel Embeddings</b><br>Mijung Park, Wittawat Jitkrittum, Dino Sejdinovic</p>-->
<!--<p>222: <b>Fast Dictionary Learning with a Smoothed Wasserstein Loss</b><br>Antoine Rolet, Marco Cuturi, Gabriel Peyré</p>-->
<!--<p>231: <b>New Resistance Distances with Global Information on Large Graphs</b><br>Canh Hao Nguyen, Hiroshi Mamitsuka</p>-->
<!--<p>232: <b>Batch Bayesian Optimization via Local Penalization</b><br>Javier Gonzalez, Zhenwen Dai, Philipp Hennig, Neil Lawrence</p>-->
<!--<p>234: <b>Learning relationships between data obtained independently</b><br>Alexandra Carpentier, Teresa Schlueter</p>-->
<!--<p>236: <b>Fast and Scalable Structural SVM with Slack Rescaling</b><br>Heejin Choi, Ofer Meshi, Nathan Srebro</p>-->
<!--<p>243: <b>Probabilistic Approximate Least-Squares</b><br>Simon Bartels, Philipp Hennig</p>-->
<!--<p>246: <b>Approximate Inference Using DC Programming For Collective Graphical Models</b><br>Thien Nguyen, Akshat Kumar, Hoong Chuin Lau, Daniel Sheldon</p>-->
<!--<p>261: <b>Sequential Inference for Deep Gaussian Process</b><br>Yali Wang, Marcus Brubaker, Brahim Chaib-draa, Raquel Urtasun</p>-->
<!--<p>263: <b>Variational Tempering</b><br>Stephan Mandt, Farhan Abrol, Rajesh Ranganath, James McInerney, David Blei</p>-->
<!--<p>267: <b>On Convergence of Model Parallel Proximal Gradient Algorithm for Stale Synchronous Parallel System</b><br>Yi Zhou, Yaoliang Yu, Wei Dai, Yingbin Liang, Eric Xing</p>-->
<!--<p>273: <b>Scalable MCMC for Mixed Membership Stochastic Blockmodels</b><br>Wenzhe Li, Max Welling, Sungjin Ahn</p>-->
<!--<p>275: <b>Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo</b><br>Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, Harri Lähdesmäki</p>-->
<!--<p>276: <b>A Deep Generative Deconvolutional Image Model</b><br>Yunchen Pu, Xin Yuan, Andrew Stevens, Chunyuan Li, Lawrence Carin</p>-->
<!--<p>278: <b>Distributed Multi-Task Learning</b><br>Jialei Wang, Mladen Kolar, Nathan Srebro</p>-->
<!--<p>287: <b>A Fixed-Point Operator for Inference in Variational Bayesian Latent Gaussian Models</b><br>Rishit Sheth, Roni Khardon</p>-->
<!--<p>288: <b>Learning Probabilistic Submodular Diversity Models Via Noise Contrastive Estimation</b><br>Sebastian Tschiatschek, Josip Djolonga, Andreas Krause</p>-->
<!--<p>291: <b>Fast Saddle-Point Algorithm for Generalized Dantzig Selector and FDR Control with the Ordered $\ell_1$-Norm</b><br>Sangkyun Lee, Damian Brzyski, Malgorzata Bogdan</p>-->
<!--<p>302: <b>GLASSES: Relieving The Myopia Of Bayesian Optimisation</b><br>Javier Gonzalez, Michael Osborne, Neil Lawrence</p>-->
<!--<p>304: <b>Stochastic Variational Inference for the HDP-HMM</b><br>Aonan Zhang, San Gultekin, John Paisley</p>-->
<!--<p>305: <b>Stochastic Neural Networks with Monotonic Activation Functions</b><br>Siamak Ravanbakhsh, Barnabas Poczos, Jeff Schneider, Dale Schuurmans, Russell Greiner</p>-->
<!--<p>308: <b>(Bandit) Convex Optimization with Biased Noisy Gradient Oracles</b><br>Xiaowei Hu, Prashanth L.A., András György, Csaba Szepesvari</p>-->
<!--<p>311: <b>Variational Gaussian Copula Inference</b><br>Shaobo Han, Xuejun Liao, David Dunson, Lawrence Carin, <span style="font-style: normal"></p>-->
<!--<p>314: <b>Low-Rank Approximation of Weighted Tree Automata</b><br>Guillaume Rabusseau, Borja Balle, Shay Cohen</p>-->
<!--<p>317: <b>Accelerating Optimization via Adaptive Prediction</b><br>Scott Yang, Mehryar Mohri</p>-->
<!--<p>325: <b>Model-based Co-clustering for High Dimensional Sparse Data</b><br>Aghiles Salah, Nicoleta Rogovschi, Mohamed Nadif</p>-->
<!--<p>326: <b>DUAL-LOCO: Distributing Statistical Estimation Using Random Projections</b><br>Christina Heinze, Brian McWilliams, Nicolai Meinshausen</p>-->
<!--<p>332: <b>High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models</b><br>Chun-Liang Li, Barnabas Poczos, Jeff Schneider, Kirthevasan Kandasamy</p>-->
<!--<p>335: <b>On the Use of Non-Stationary Strategies for Solving Two-Player Zero-Sum Markov Games</b><br>Julien Perolat, Bilal Piot, Bruno Scherrer, Olivier Pietquin</p>-->
<!--<p>338: <b>Manifold Learning with Adaptive Spectral Transform</b><br>Hanxiao Liu, Yiming Yang</p>-->
<!--<p>340: <b>Pseudo-Marginal Slice Sampling</b><br>Iain Murray, Matthew Graham</p>-->
<!--<p>343: <b>How to learn a graph from smooth signals</b><br>Vassilis Kalofolias</p>-->
<!--<p>351: <b>Pareto Front Identification from Stochastic Bandit Feedback</b><br>Peter Auer, Chao-Kai Chiang, Ronald Ortner, Madalina Drugan</p>-->
<!--<p>353: <b>Sketching, embedding and dimensionality reduction in information theoretic spaces</b><br>Amir Ali Abdullah, Suresh Venkatasubramanian, Ravi Kumar, Sergei Vassilvitskii, Andrew McGregor</p>-->
<!--<p>355: <b>AdaDelay: Delay Adaptive Distributed Stochastic Optimization</b><br>Suvrit Sra, Adams Wei Yu, Mu Li, Alex Smola</p>-->
<!--<p>356: <b>Exponential Stochastic Cellular Automata for Massively Parallel Inference</b><br>Manzil Zaheer, Michael Wick, Jean-Baptiste Tristan, Alex Smola, Guy Steele</p>-->
<!--<p>357: <b>Globally Sparse Probabilistic PCA</b><br>Pierre-Alexandre Mattei, Charles Bouveyron, Pierre Latouche</p>-->
<!--<p>361: <b>Provable Bayesian Inference via Particle Mirror Descent</b><br>Bo Dai, Niao He, Hanjun Dai, Le Song</p>-->
<!--<p>365: <b>Unsupervised Feature Selection by Preserving Stochastic Neighbors</b><br>Xiaokai Wei, Philip S. Yu</p>-->
<!--<p>366: <b>Improved Learning Complexity in Combinatorial Pure Exploration Bandits</b><br>Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Ronald Ortner, Peter Bartlett</p>-->
<!--<p>369: <b>Scalable Gaussian Processes for Characterizing Multidimensional Change Surfaces</b><br>William Herlands, Andrew Wilson, Seth Flaxman, Daniel Neill, Wilbert Van Panhuis, Eric Xing, Hannes Nickisch</p>-->
<!--<p>370: <b>Optimization as Estimation with Gaussian Processes in Bandit Settings</b><br>Zi Wang, Bolei Zhou, Stefanie Jegelka</p>-->
<!--<p>378: <b>Inference for High-dimensional Exponential Family Graphical Models</b><br>Jialei Wang, Mladen Kolar</p>-->
<!--<p>381: <b>Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization</b><br>Changyou Chen, David Carlson, Zhe Gan, Chunyuan Li, Lawrence Carin</p>-->
<!--<p>383: <b>Fitting Spectral Decay with the $k$-Support Norm</b><br>Andrew McDonald, Massimiliano Pontil, Dimitris Stamos</p>-->
<!--<p>385: <b>Early Stopping as Nonparametric Variational Inference</b><br>David Duvenaud, Dougal Maclaurin, Ryan Adams</p>-->
<!--<p>389: <b>Bayesian Nonparametric Kernel-Learning</b><br>Junier B. Oliva, Avinava Dubey, Andrew Wilson, Barnabas Poczos, Jeff Schneider, Eric Xing</p>-->
<!--<p>390: <b>Tight Variational Bounds via Random Projections and I-Projections</b><br>Lun-Kai Hsu, Tudor Achim, Stefano Ermon</p>-->
<!--<p>392: <b>Bethe Learning of Graphical Models via MAP Decoding</b><br>Kui Tang, Nicholas Ruozzi, David Belanger, Tony Jebara</p>-->
<!--<p>395: <b>DREVS: Determinantal Regularization for Ensemble Variable Selection</b><br>Veronika Rockova, Gemma Moran, Edward George</p>-->
<!--<p>399: <b>Scalable and Sound Low-Rank Tensor Learning</b><br>Hao Cheng, Yaoliang Yu, Xinhua Zhang, Eric Xing, Dale Schuurmans</p>-->
<!--<p>400: <b>Efficient Non-negative Matrix Factorization for Discrete Data with Structural Side-Information</b><br>Changwei Hu, Piyush Rai, Lawrence Carin</p>-->
<!--<p>404: <b>Scalable Bilinear Non-negative Latent Factor Models for Multi-Relational Data</b><br>Changwei Hu, Piyush Rai, Lawrence Carin</p>-->
<!--<p>406: <b>Consistently Estimating Markov Chains with Noisy Aggregate Data</b><br>Garrett Bernstein, Daniel Sheldon</p>-->
<!--<p>409: <b>Unwrapping ADMM: Efficient Distributed Computing via Transpose Reduction</b><br>Gavin Taylor, Tom Goldstein</p>-->
<!--<p>415: <b>Unbounded Bayesian Optimization via Regularization</b><br>Bobak Shahriari, Alexandre Bouchard-Cote, Nando de Freitas</p>-->
<!--<p>421: <b>Non-Gaussian Component Analysis with Log-Density Gradient Estimation</b><br>Hiroaki Sasaki, Gang Niu, Masashi Sugiyama</p>-->
<!--<p>477: <b>Parallel Markov Chain Monte Carlo via Spectral Clustering</b><br>Guillaume Basse, Aaron Smith, Natesh Pillai</p>-->
<!--<h2><span id="poster_session3">Poster Session 3 (May 11)</span></h2>-->
<!--<b>In addition to AISTATS 2016 posters, MLSS posters will be displayed in this-->
<!--session.</b>-->
<!--<p>23: <b>Probability Inequalities for Kernel Embeddings in Sampling without Replacement</b><br>Markus Schneider</p>-->
<!--<p>104: <b>Tensor vs Matrix Methods: Robust Tensor Decomposition under Block Sparse Perturbations</b><br>Anima Anandkumar, Prateek Jain, Yang Shi, Niranjan Uma Naresh</p>-->
<!--<p>154: <b>Nearly optimal classification for semimetrics</b><br>Lee-Ad Gottlieb, Aryeh Kontorovich, Pinhas Nisnevitch</p>-->
<!--<p>190: <b>Large-Scale Semi-Supervised Learning Using Streaming Approximation</b><br>Sujith Ravi, Qiming Diao</p>-->
<!--<p>212: <b>Low-Rank and Sparse Structure Pursuit via Alternating Minimization</b><br>Quanquan Gu, Zhaoran Wang, Han Liu</p>-->
<!--<p>221: <b>Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization</b><br>Fanhua Shang, Yuanyuan Liu, James Cheng</p>-->
<!--<p>321: <b>Scalable geometric density estimation</b><br>Ye Wang, Antonio Canale, David Dunson</p>-->
<!--<p>346: <b>Ordered Weighted l1 Regularized Regression with Strongly Correlated Covariates: Theoretical Aspects</b><br>Mario Figueiredo, Robert Nowak</p>-->
<!--<p>374: <b>A Convex Surrogate Operator for General Non-Modular Loss Functions</b><br>Jiaqian Yu, Matthew Blaschko</p>-->
<!--<p>423: <b>Online learning with noisy side observations</b><br>Tomáš Kocák, Gergely Neu, Michal Valko</p>-->
<!--<p>424: <b>Black-Box Policy Search with Probabilistic Programs</b><br>Jan-Willem Vandemeent, Brooks Paige, David Tolpin, Frank Wood</p>-->
<!--<p>428: <b>Efficient Bregman Projections onto the Generalized Permutahedron</b><br>Cong Han Lim, Stephen Wright</p>-->
<!--<p>430: <b>Searching for Generalized Instrumental Variables</b><br>Benito Van der Zander, Maciej Liśkiewicz</p>-->
<!--<p>437: <b>Provable Tensor Methods for Learning Mixtures of Generalized Linear Models</b><br>Hanie Sedghi, Majid Janzamin, Anima Anandkumar</p>-->
<!--<p>439: <b>Controlling Bias in Adaptive Data Analysis Using Information Theory</b><br>Daniel Russo, James Zou</p>-->
<!--<p>444: <b>A Column Generation Bound Minimization Approach with PAC-Bayesian Generalization Guarantees</b><br>François Laviolette, Mario Marchand, Jean-Francis Roy</p>-->
<!--<p>446: <b>Graph Sparsification Approaches for Laplacian Smoothing Problems</b><br>Veeru Sadhanala, Yu-Xiang Wang, Ryan Tibshirani, Alex Smola</p>-->
<!--<p>451: <b>Scalable Exemplar Clustering and Facility Location via Augmented Block Coordinate Descent with Column Generation</b><br>Ian En-Hsu Yen, Dmitry Malioutov, Abhishek Kumar</p>-->
<!--<p>454: <b>Robust Covariate Shift Regression</b><br>Xiangli Chen, Brian Ziebart, Mathew Monfort, Anqi Liu</p>-->
<!--<p>458: <b>On Lloyd's algorithm: new theoretical insights for clustering in practice</b><br>Cheng Tang, Claire Monteleoni</p>-->
<!--<p>472: <b>Towards stability and optimality in stochastic gradient descent</b><br>Panos Toulis, Dustin Tran, Edo Airoldi</p>-->
<!--<p>473: <b>Communication Efficient Distributed Agnostic Boosting</b><br>Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau</p>-->
<!--<p>476: <b>Differentially Private Causal Inference</b><br>Matt Kusner, Yu Sun, Karthik Sridharan, Kilian Weinberger</p>-->
<!--<p>479: <b>Efficient Sampling for k-Determinantal Point Processes</b><br>Chengtao Li, Stefanie Jegelka,Suvrit Sra</p>-->
<!--<p>482: <b>A Fast and Reliable Policy Improvement Algorithm</b><br>Yasin Abbasi-Yadkori, Peter Bartlett, Stephen Wright</p>-->
<!--<p>493: <b>Learning Sigmoid Belief Networks via Monte Carlo Expectation Maximization</b><br>Zhao Song, Ricardo Henao, David Carlson, Lawrence Carin</p>-->
<!--<p>495: <b>Active Learning Algorithms for Graphical Model Selection</b><br>Gautamd Dasarathy, Aarti Singh, Maria-Florina Balcan, Jong Park</p>-->
<!--<p>500: <b>Streaming Kernel Principal Component Analysis</b><br>Jeff Phillips, Mina Ghashami, Daniel Perry</p>-->
<!--<p>501: <b>Back to the future: Radial Basis Function networks revisited</b><br>Qichao Que, Mikhail Belkin</p>-->
<!--<p>503: <b>Cut Pursuit: fast algorithms to learn piecewise constant functions</b><br>Loic Landrieu, Guillaume Obozinski</p>-->
<!--<p>505: <b>Loss Bounds and Time Complexity for Speed Priors</b><br>Daniel Filan, Jan Leike, Marcus Hutter</p>-->
<!--<p>512: <b>NYTRO: When Subsampling Meets Early Stopping</b><br>Raffaello Camoriano, Lorenzo Rosasco, Alessandro Rudi, Tomás M. Angles L.</p>-->
<!--<p>520: <b>Spectral M-estimation</b><br>Dustin Tran, Minjae Kim, Finale Doshi-Velez</p>-->
<!--<p>523: <b>Chained Gaussian Processes</b><br>Alan Saul, James Hensman, Aki Vehtari, Neil Lawrence</p>-->
<!--<p>526: <b>Multiresolution Matrix Compression</b><br>Nedelina Teneva, Pramod Kaushik Mudrakarta, Risi Kondor</p>-->
<!--<p>528: <b>Supervised neighborhoods for distributed nonparametric regression</b><br>Adam Bloniarz, Ameet Tawalkar, Bin Yu, Christopher Wu</p>-->
<!--<p>538: <b>Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation</b><br>Laura Balzano, Dejiao Zhang</p>-->
<!--<p>540: <b>Online and Distributed Bayesian Moment Matching for SPNs</b><br>Abdullah Rashwan, Pascal Poupart, Han Zhao</p>-->
<!--<p>548: <b>Online (and Offline) Robust PCA: Novel Algorithms and Correctness Results</b><br>Jinchun Zhan, Brian Lois, Han Guo, Namrata Vaswani</p>-->
<!--<p>551: <b>Parallel Majorization Minimization with Dynamically Restricted Domains for Nonconvex Optimization</b><br>Yan Kaganovsky, Ikenna Odinaka, David Carlson, Lawrence Carin</p>-->
<!--<p>555: <b>Discriminative Structure Learning of Arithmetic Circuits</b><br>Amirmohammad Rooshenas, Daniel Lowd</p>-->
<!--<p>558: <b>One Scan 1-Bit Compressed Sensing</b><br>Ping Li</p>-->
<!--- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -->