-
Notifications
You must be signed in to change notification settings - Fork 0
/
keywords.html
122 lines (109 loc) · 2.96 KB
/
keywords.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
layout: default
---
<script type="text/javascript">
document.getElementById('LNcfp').id='leftcurrent';
</script>
<div class="contents">
<h2>Models and Estimation</h2>
<ul>
<li> graphical models (inference, parameter and structure learning, ...)
<li> causality
<li> approximations to Bayesian reasoning (variational methods, message passing, ...)
<li> Bayesian nonparametrics
<li> Gaussian processes
<li> other stochastic processes (Dirichlet, Pitman-Yor, ...)
<li> Bayesian model combination
<li> objective Bayesian methods
<li> deep belief nets, deep RBMs
<li> frequentist methods (maximum likelihood, ...)
<li> statistical learning theory, computational learning theory
<li> nonparametric models
<li> kernel methods
<li> large margin methods
<li> boosting
<li> ensemble methods
<li> model selection, feature/variable selection
<li> spectral methods
<li> nonlinear embedding, manifold learning
<li> matrix and tensor factorization
<li> sparse estimation, compressed sensing
<li> maximum entropy, minimum description length, compression, bottlenecks
<li> asymptotics, consistency
<li> information theory
<li> information geometry
</ul>
<h2>Problem types</h2>
<h3>Supervised learning</h3>
<ul>
<li> classification and regression
<li> structured prediction
<li> prediction with missing data
<li> active learning, experimental design
<li> online learning
</ul>
<h3>Unsupervised and semi-supervised learning</h3>
<ul>
<li> density estimation
<li> clustering
<li> latent variable models (mixtures, topic models, PCA, ...)
</ul>
<h3>Reasoning about complex structures</h3>
<ul>
<li> logic and probability
<li> representation languages
<li> relational/structured learning
<li> learning on graphs
<li> spatial models
<li> time series and sequence models
</ul>
<h3>Decision-making and control</h3>
<ul>
<li> decision theory
<li> reinforcement learning
<li> planning
<li> control theory
</ul>
<h3>Reasoning about multiple agents</h3>
<ul>
<li> game theory
<li> no-regret learning
<li> mechanism design
<li> multi-agent systems
</ul>
<h2>Algorithms and applications</h2>
<h3>Computation and algorithms</h3>
<ul>
<li> combinatorial optimization, search
<li> convex optimization
<li> gradient-based optimization
<li> numerical integration and summation
<li> Monte Carlo methods
<li> parallel and distributed algorithms
<li> high performance architectures (clusters, clouds, GPGPUs, ...)
<li> large scale learning systems
</ul>
<h3>Applications and software</h3>
<ul>
<li> biology and genomics
<li> brain computer interfaces, brain imaging
<li> cognitive science
<li> collaborative filtering
<li> finance
<li> economics
<li> informatics
<li> information retrieval
<li> linguistics, natural language processing
<li> medical imaging
<li> network data analysis
<li> neuroscience
<li> robotics
<li> statistical databases
<li> scientific visualization
<li> signal processing
<li> software packages
<li> vision, image processing
<li> the web
</ul>
</div>
<!--- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -->