-
Notifications
You must be signed in to change notification settings - Fork 0
/
accepted.html
608 lines (248 loc) · 15.2 KB
/
accepted.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
---
title: Accepted Papers
layout: default
---
<p> The proceedings of AISTATS are now available on line: <br />
<a href="http://proceedings.mlr.press/v31/">http://proceedings.mlr.press/v31/</a>. <br />
<h2>Accepted Papers</h2>
<br>
<b>Scoring anomalies: a M-estimation formulation</b><br>
Stephan Clemencon, Telecom ParisTech; Jeremie Jakubowicz, Telecom Sud
Management<br><br>
<b>Bayesian Estimation for Partially Observed MRFs</b><br>
Yutian Chen, UC Irvine; Max Welling, University of California,
Irvine<br><br>
<b>High-dimensional Inference via Lipschitz Sparsity-Yielding
Regularizers</b><br>
Zheng Pan, Tsinghua Univ.; Changshui Zhang, Tsinghua Univ.<br><br>
<b>Learning to Top-K Search using Pairwise Comparisons</b><br>
Brian Eriksson, Technicolor<br><br>
<b>Stochastic blockmodeling of relational event dynamics</b><br>
Christopher DuBois, UC Irvine; Carter Butts, UC Irvine; Padhraic Smyth,
University of California Irvine<br><br>
<b>Unsupervised Link Selection in Networks</b><br>
Quanquan Gu, CS, UIUC; Charu Aggarwal, IBM Research; Jiawei Han, UIUC<br><br>
<b>Beyond Sentiment: The Manifold of Human Emotions</b><br>
Seungyeon Kim, Georgia Institute of Technolog; Fuxin Li, Georgia
Institute of Technology; Guy Lebanon, Georgia Institute of Technology; Irfan
Essa, Georgia Institute of Technology<br><br>
<b>Greedy Bilateral Sketch, Completion and Smoothing</b><br>
Tianyi Zhou, Universityof Technology Sydney; Dacheng Tao, University of
Technology, Sydney<br><br>
<b>Further Optimal Regret Bounds for Thompson Sampling</b><br>
Shipra Agrawal, MSR India; Navin Goyal, MSR India<br><br>
<b>Faster Training of Structural SVMs with Diverse M-Best
Cutting-Planes</b><br>
Abner Guzman-Rivera, University of Illinois; Pushmeet Kohli, Microsoft
Research Cambridge; Dhruv Batra, Virginia Tech<br><br>
<b>Structural Expectation Propagation (SEP): Bayesian structure
learning for networks with latent variables</b><br>
Nevena Lazic, Microsoft Research; Christopher Bishop, ; John Winn, <br><br>
<b>DYNA-CARE: Dynamic Cardiac Arrest Risk Estimation</b><br>
Joyce Ho, University of Texas at Austin; Yubin Park, University of Texas
at Austin; Carlos Carvalho, University of Texas at Austin; Joydeep Ghosh,
University of Texas at Austin<br><br>
<b>Competing with an Infinite Set of Models in Reinforcement
Learning</b><br>
Phuong Nguyen, Australian National University; Odalric-Ambrym Maillard,
Montanuniversitaet Leoben; Daniil Ryabko, INRIA, Lille; Ronald Ortner,
Montanuniversitaet Leoben<br><br>
<b>Central Limit Theorems for Conditional Markov Chains</b><br>
Mathieu Sinn, IBM Research; Bei Chen, IBM Research - Ireland<br><br>
<b>Efficient Variational Inference for Gaussian Process Regression
Networks</b><br>
Trung Nguyen, ANU and NICTA; Edwin Bonilla, NICTA and ANU<br><br>
<b>Active Learning for Interactive Visualization</b><br>
Tomoharu Iwata, University of Cambridge; Neil Houlsby, University of
Cambridge; Zoubin Ghahramani, University of Cambridge<br><br>
<b>ODE parameter inference using adaptive gradient matching with
Gaussian processes</b><br>
Frank Dondelinger, Biomathematics and Statistics Scotland; Dirk
Husmeier, University of Glasgow; Simon Rogers, University of Glasgow;
Maurizio Filippone, University of Glasgow<br><br>
<b>Exact Learning of Bounded Tree-width Bayesian Networks</b><br>
Janne Korhonen, University of Helsinki; Pekka Parviainen, <br><br>
<b>Completeness Results for Lifted Variable Elimination</b><br>
Nima Taghipour, KU Leuven; Daan Fierens, KU LEUVEN; Guy Van den Broeck,
UCLA; Jesse Davis, KU LEUVEN; Hendrik Blockeel, KU LEUVEN<br><br>
<b>Fast Near-GRID Gaussian Process Regression</b><br>
Yuancheng Luo, University of Maryland; Ramani Duraiswami, University of
Maryland<br><br>
<b>Convex Collective Matrix Factorization</b><br>
Guillaume Bouchard, "Xerox Research Centre, Europe"; Dawei Yin,
Lehigh University; Shengbo Guo, Xerox Research Centre Europe<br><br>
<b>Meta-Transportability of Causal Effects: A Formal Approach</b><br>
Elias Bareinboim, UCLA; Judea Pearl, UCLA<br><br>
<b>Why Steiner-tree type algorithms work for community detection</b><br>
Mung Chiang, Princeton University; Henry Lam, Boston University; Zhenming
Liu, Princeton University; Harold Poor, Princeton University<br><br>
<b>Clustering Oligarchies</b><br>
Margareta Ackerman, Caltech; Shai Ben David, ; David Loker, University
of Waterloo; Sivan Sabato, Microsoft Research<br><br>
<b>Structure Learning of Mixed Graphical Models</b><br>
Jason Lee, Computational Math & Engineeri; Trevor Hastie, Stanford
University<br><br>
<b>A Simple Criterion for Controlling Selection Bias</b><br>
Eunice Yuh-Jie Chen, UCLA; Judea Pearl, UCLA<br><br>
<b>Clustered Support Vector Machine</b><br>
Quanquan Gu, CS, UIUC; Jiawei Han, UIUC<br><br>
<b>A Competitive Test for Uniformity of Monotone Distributions</b><br>
Ashkan Jafarpour, Univ. of California, San Diego; Jayadev
Acharya, University of California, San Diego; Alon Orlitsky, University of
California, San Diego; Ananda Suresh, University of California, San Diego<br><br>
<b>Deep Gaussian Processes</b><br>
Andreas Damianou, University of Sheffield; Neil Lawrence, University of
Sheffield<br><br>
<b>Permutation estimation and minimax rates of identifiability</b><br>
Olivier Collier, IMAGINE-ENPC / CREST-ENSAE; Arnak Dalalyan, Ecole des
Ponts ParisTech<br><br>
<b>Bayesian Structure Learning for Functional Neuroimaging</b><br>
Oluwasanmi Koyejo, University of Texas at Austin; Mijung Park,
UT Austin; Russell Poldrack, University of Texas at Austin; Joydeep Ghosh,
University of Texas at Austin; Jonathan Pillow, The University of Texas at
Austin<br><br>
<b>Dual Decomposition for Joint Discrete-Continuous Optimization</b><br>
Christopher Zach, Microsoft Research<br><br>
<b>Distribution-Free Distribution Regression</b><br>
Barnabas Poczos, Carnegie Mellon University; Aarti Singh, Carnegie
Mellon University; Alessandro Rinaldo, Carnegie Mellon University; Larry
Wasserman, <br><br>
<b>A Last-Step Regression Algorithm for Non-Stationary Online
Learning</b><br>
Edward Moroshko, Technion; Koby Crammer, Technion University<br><br>
<b>Efficiently Sampling Probabilistic Programs via Program Analysis</b><br>
Arun Chaganty, ; Aditya Nori, Microsoft Research India; Sriram Rajamani,
<br><br>
<b>On the Asymptotic Optimality of Maximum Margin Bayesian
Networks</b><br>
Sebastian Tschiatschek, TU Graz; Franz Pernkopf, TU Graz<br><br>
<b>Ultrahigh Dimensional Feature Screening via RKHS Embeddings</b><br>
Krishnakumar Balasubramanian, Gatech; Bharath Sriperumbudur, Cambridge
University ; Guy Lebanon, Georgia Institute of Technology<br><br>
<b>Data-driven covariate selection for nonparametric estimation of
causal effects</b><br>
Doris Entner, University of Helsinki; Patrik Hoyer, ; Peter Spirtes, <br><br>
<b>Mixed LICORS: A Nonparametric Algorithm for Predictive State
Reconstruction</b><br>
Georg Goerg, Carnegie Mellon University; Cosma Shalizi, Carnegie Mellon
University <br><br>
<b>Thompson Sampling in Switching Environments with Bayesian
Online Change Detection</b><br>
Joseph Mellor, University of Manchester; Jonathan Shapiro, University of
Manchester<br><br>
<b>Collapsed Variational Bayesian Inference for Hidden Markov
Models</b><br>
Pengyu Wang, University of Oxford; Phil Blunsom, University of Oxford<br><br>
<b>Supervised Sequential Classification Under Budget Constraints</b><br>
Kirill Trapeznikov, Boston University; Venkatesh Saligrama, Boston
University; david Castanon, Boston University<br><br>
<b>Computing the M Most Probable Modes of a Graphical Model </b><br>
Chao Chen, Rutgers University; Vladimir Kolmogorov, IST Austria; Yan
Zhu, Rutgers University; Dimitris Metaxas, Rutgers University; Christoph
Lampert, IST Austria<br><br>
<b>Estimating the Partition Function of Graphical Models Using
Langevin Importance Sampling </b><br>
Jianzhu Ma, TTIC; Jian Peng, ; Sheng Wang, TTIC; Jinbo Xu, TTIC<br><br>
<b>Random Projections for Support Vector Machines</b><br>
Saurabh Paul, Rensselaer Polytechnic Inst; Christos Boutsidis, IBM;
Malik Magdon-Ismail, ; Petros Drineas, RPI<br><br>
<b>A unifying representation for a class of dependent random
measures</b><br>
Nicholas Foti, Dartmouth College; Sinead Williamson, Carnegie Mellon
University; Daniel Rockmore, Dartmouth College; Joseph Futoma, Dartmouth
College<br><br>
<b>Dynamic Copula Networks for Modeling Real-valued Time Series</b><br>
Elad Eban, Hebrew University; gideon Rothschild, Hebrew University; Adi
Mizrahi, Hebrew University; Israel Nelken, Hebrew University; Gal Elidan,
Hebrew University<br><br>
<b>A Parallel, Block Greedy Method for Sparse Inverse Covariance
Estimation for Ultra-high Dimensions</b><br>
Prabhanjan Kambadur, IBM TJ Watson Research Center; Aurelie Lozano, <br><br>
<b>A recursive estimate for the predictive likelihood in a topic
model</b><br>
James Scott, ; Jason Baldridge, University of Texas at Austin<br><br>
<b>Nystrom Approximation for Large-Scale Determinantal Processes</b><br>
Raja Hafiz Affandi, University of Pennsylvania; Emily Fox, ; Ben Taskar,
University of Pennsylvania; Alex Kulesza, <br><br>
<b>A simple sketching algorithm for entropy estimation over
streaming data</b><br>
Ioana Cosma, University of Ottawa; Peter Clifford, University of Oxford<br><br>
<b>Detecting Activations over Graphs using Spanning Tree Wavelet
Bases</b><br>
James Sharpnack, Carnegie Mellon University; Aarti Singh, Carnegie
Mellon University; Akshay Krishnamurthy, CMU<br><br>
<b>Learning Social Infectivity in Sparse Low-rank Networks Using
Multi-dimensional Hawkes Processes</b><br>
Ke Zhou, Georgia institute of technolog; Le Song, Georgia institute of
technology; Hongyuan Zha, Georgia institute of technology<br><br>
<b>Changepoint Detection over Graphs with the Spectral Scan
Statistic</b><br>
James Sharpnack, Carnegie Mellon University; Aarti Singh, Carnegie
Mellon University; Alessandro Rinaldo, Carnegie Mellon University<br><br>
<b>Statistical Tests for Contagion in Observational Social Network
Studies</b><br>
Greg Ver Steeg, Information Sciences Institute; Aram Galstyan,
Information Sciences Institute, USC<br><br>
<b>Diagonal Orthant Multinomial Probit Models</b><br>
James Johndrow, Duke University; Kristian Lum, Virginia Tech; David
Dunson, Duke University<br><br>
<b>Reconstructing ecological networks with hierarchical Bayesian
regression and Mondrian processes</b><br>
Andrej Aderhold, University of St Andrews; Dirk Husmeier, University of
Glasgow; V. Anne Smith, University of St Andrews<br><br>
<b>Bayesian learning of joint distributions of objects</b><br>
Anjishnu Banerjee, Duke University; Jared Murray, Duke University;
David Dunson, Duke University<br><br>
<b>Consensus Ranking with Signed Permutations</b><br>
Raman Arora, TTIC; Marina Meila, University of Washington<br><br>
<b>Sparse Principal Component Analysis for High Dimensional
Multivariate Time Series</b><br>
Zhaoran Wang, Princeton University; Fang Han, Johns Hopkins University;
Han Liu, <br><br>
<b>Texture Modeling with Convolutional Spike-and-Slab RBMs and
Deep Extensions</b><br>
Heng Luo, Universite de Montreal; Pierre Luc Carrier, Universite de
Montreal; Aaron Courville, Universite de Montreal; Yoshua Bengio, Universite
de Montreal<br><br>
<b>Block Regularized Lasso for Multivariate Multi-Response Linear
Regression</b><br>
Weiguang Wang, Syracuse University; Yingbin Liang, Syracuse University;
Eric Xing, Carnegie Mellon University<br><br>
<b>Predictive Correlation Screening: Application to Two-stage
Predictor Design in High Dimension</b><br>
Hamed Firouzi, University of Michigan; Alfred Hero III, University of
Michigan<br><br>
<b>Distributed Learning of Gaussian Graphical Models via Marginal
Likelihoods</b><br>
Zhaoshi Meng, University of Michigan; Dennis Wei, University of
Michigan; Ami Wiesel, The Hebrew University of Jerusalem ; Alfred Hero III,
University of Michigan<br><br>
<b>Dynamic Scaled Sampling for Deterministic Constraints</b><br>
Lei Li, UC Berkeley; Bharath Ramsundar, ; Stuart Russell, UC Berkeley<br><br>
<b>Localization and Adaptation in Online Learning</b><br>
Alexander (Sasha) Rakhlin, University of Pennsylvania; Ohad Shamir, ;
Karthik Sridharan, University of Pennsylvania<br><br>
<b>Recursive Karcher Expectation Estimators And Geometric Law of
Large Numbers</b><br>
Hesamoddin Salehian, University of Florida; Guang Cheng, ; Jeffrey Ho,
UFL; Baba Vemuri, University of Florida<br><br>
<b>Distributed and Adaptive Darting Monte Carlo through
Regenerations</b><br>
Sungjin Ahn, UCI; Yutian Chen, UC Irvine; Max Welling, "University
of California, Irvine"<br><br>
<b>Uncover Topic-Sensitive Information Diffusion Networks</b><br>
NAN DU, GATECH; Le Song, Georgia institute of technology; Hyenkyun Woo,
; Hongyuan Zha, Georgia institute of technology<br><br>
<b>Learning Markov Networks With Arithmetic Circuits</b><br>
Daniel Lowd, University of Oregon; Amirmohammad Rooshenas, University of
Oregon<br><br>
<b>Bethe Bounds and Approximating the Global Optimum</b><br>
Adrian Weller, Columbia University; Tony Jebara, Columbia University<br><br>
<!-- <p>
The conference will start the morning of Monday, April 29 (so arrival on Sunday night is recommended). There will be two poster sessions, Monday and Tuesday evenings. On Wednesday, May 1st there will be a mixture of AISTATS and Learning Workshop sessions; AISTATS registrants are welcome to attend both AISTATS and Learning sessions on Wednesday.<p> -->
<!-- Speakers should be sure to submit consent forms as described on the <a href="submit.php">author information page</a>. Regular orals are allocated 25 minutes in the schedule, which means that the talk should be 20 minutes long (with the remaining time reserved for questions, discussion, and fiddling with projector cables). Notable paper talks are allocated 35 minutes in the schedule, which means 25 minutes for the talk, plus 5 minutes for the discussant, plus 5 minutes for questions, etc. Invited talks are allocated 60 minutes, which means 50 minutes for the talk plus 10 minutes for discussion and questions.<p>
For poster presenters: the poster boards are 4 feet tall by 8 feet wide. It is probably a good idea to plan not to use the entire width, since there may be other poster boards immediately adjacent to yours.<p>
To save trees, we are not planning to hand out paper copies of the schedule at the meeting. So, if you prefer a hardcopy, please print it beforehand. Or, internet access will be available, so you can just check the schedule online at the meeting.
-->
</div>
<!--- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -->