-
Whole new Optimize (Trait based)
-
Pure Rust implementation of Linear Algebra
- LU (Completely Pivoting)
- LU (Partial Pivoting)
- QR
- SVD
- Implement
WithJSON
forDataFrame
-
to_json_value
-
from_json_value
-
- Implement various pdf
- Bernoulli
- Beta
- Binomial
- Dirichlet
- Gamma
- Student's t
- Uniform
- Wishart
- Weighted Uniform
- Implement special polynomial
- Legendre
- Bessel
- Hermite
- Implement convenient structure of Neural Network
- Add Statistical regression
- Gaussian Kernel
- Logistic Kernel
- Implement more Eigenvalue algorithms
- Complex matrix
- Can choose API - MATLAB, Python, R
- Implement Plot
- Re-write
numerical
module - Optimize
- Linear Regression
- Non-linear Regression
- Gauss-Newton (But not yet merged)
- Gradient Descent
- Levenberg-Marquardt
- Implement DataFrame
- Implement higher order automatic derivatives
- Generic trait for Automatic differentiation (Create
AD
trait) - Separate
DataFrame
fromdataframe
feature. (And renamedataframe
feature to some awesome name) - Reduce compile time
- Replace
proc_macro
forAD
with ordinary macro or Enum
- Replace
- Make
csv
optional - Remove
dual
,hyperdual
and modifyReal
,Number
(How to bindf64
&AD
effectively?) - Add more IO options for DataFrame
- CSV (
csv
feature) - NetCDF (
nc
feature) - Parquet
- CSV (
- Documentized
- Vector
- Matrix
- Linear Algebra
- Functional Programming
- Statistics
- Interpolation & Spline
- ODE
- Macros
- Optimize
- Automatic Differentiation
- DataFrame
- Implement more spline algorithms
- Whole new ODE (trait based)
- Whole new root finding (trait based)